首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   8篇
  国内免费   1篇
测绘学   4篇
大气科学   9篇
地球物理   38篇
地质学   64篇
海洋学   19篇
天文学   63篇
自然地理   10篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   18篇
  2008年   12篇
  2007年   13篇
  2006年   8篇
  2005年   8篇
  2004年   11篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   9篇
  1998年   6篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
121.
Thinning of semi-arid forests to reduce wildfire risk is believed to improve forest health by increasing soil moisture. Increased snowpack, reduced transpiration and reduced rainfall interception are frequently cited mechanisms by which reduced canopy density may increase soil moisture. However, the relative importance of these factors has not been rigorously evaluated in field studies. We measured snow depth, snow water equivalent (SWE) and the spatial and temporal variation in soil moisture at four experimental paired treatment-control thinning sites in high elevation ponderosa pine forest northern Arizona, USA. We compared snow and soil moisture measurements with forest structure metrics derived from aerial imagery and 3-dimensional lidar data to determine the relationship between vegetation structure, snow and soil moisture throughout the annual hydrologic cycle. Soil moisture was consistently and significantly higher in thinned forest plots, even though the treatments were performed 8–11 years before this study. However, we did not find evidence that SWE was higher in thinned forests across a range of snow conditions. Regression tree analysis of soil moisture and vegetation structure data provided some evidence that localized differences in transpiration and interception of precipitation influence the spatial pattern of soil moisture at points in the annual hydrologic cycle when the system is becoming increasingly water limited. However, vegetation structure explained a relatively low amount of the spatial variance (R2 < 0.23) in soil moisture. Continuous measurements of soil moisture in depth profiles showed stronger attenuation of soil moisture peaks in thinned sites, suggesting differences in infiltration dynamics may explain the difference in soil moisture between treatments as opposed to overlying vegetation alone. Our results show limited support for commonly cited relationships between vegetation structure, snow and soil moisture and indicate that future research is needed to understand how reduction in tree density alters soil hydraulic properties.  相似文献   
122.
The onset of Alfvén intermittent chaos in space plasmas is studied by numerically solving the derivative non-linear Schrödinger equation (DNLS) under the assumption of stationary Alfvén waves. We describe how the Alfvénic fluctuations of the magnetic field can evolve from periodic to chaotic behavior through a sequence of bifurcations as the plasma dissipation is varied. The collision of a chaotic attractor with an unstable periodic orbit leads to the generation of strongly chaotic behavior, in an event known as interior crisis. We also show that in the DNLS equation, chaotic attractors coexist with nonattracting chaotic sets responsible for transient chaotic behaviors. After the interior crisis point, a wide chaotic attractor can be decomposed into two coupled nonattracting chaotic sets, resulting in intermittent chaotic time series. Understanding transient chaos is a key to understand intermittency in space plasmas.  相似文献   
123.
The paper presents the results of hydrogeomorphological mapping using IRS-IB LISS II data and evaluation of ground water prospects of each hydrogeomorphological unit in the Lehra Gaga block of Sangrur district, Punjab. The major geomorphic units identified in the area are, alluvial plain, sand dunes, palaeo channels and the Ghagar flood plain. The study area being part of alluvial plain has good to excellent ground water prospects. Field observations showed that ground water occurs under both confined and unconfined conditions with water table at shallow depth. The area on either side of the Ghagar river and along the major canals (about 46% of the total geographical area in the block) have good quality of ground water and is suitable for irrigation, whereas the water quality is marginal (sodic) in 52 per cent area of the block..  相似文献   
124.
We report silicon isotopic determinations for USGS rock reference materials BHVO-1 and BHVO-2 using a Nu Plasma multi-collector (MC)-ICP-MS, upgraded with a new adjustable entrance slit, to obtain medium resolution, as well as a stronger primary pump and newly designed sampler and skimmer cones ("B" cones). These settings, combined with the use of collector slits, allowed a resolution to be reached that was sufficient to overcome the 14N16O and 14N2 interferences overlying the 30Si and the 28Si peaks, respectively, in an earlier set-up. This enabled accurate measurement of both δ30Si and δ29Si. The δ value is expressed in per mil variation relative to the NBS 28 quartz reference material. Based on data acquired from numerous sessions spread over a period of six months, we propose a recommended average δ30Si of −0.33 ± 0.05‰ and −0.29 ± 0.11‰ (2se) for BHVO-1 and BHVO-2, respectively. Our BHVO grand mean silicon isotope composition (δ30Si =−0.31 ± 0.06‰) is significantly more negative than the only published value for BHVO-2, but is in very good agreement with the recently established average value of ocean island basalts (OIB), confirming the conclusion that the OIB reservoir has a distinct isotopic composition from the solar reservoir as sampled by chondrites.  相似文献   
125.
The formation of natural cryogenic brines   总被引:1,自引:0,他引:1  
The source of salts in the Ca-chloridic, hypersaline brines (up to 190 g Cl L−1) occurring in crystalline basement rocks in the Canadian, Fennoscandian and Bohemian Shields and their evolution have been investigated and reported. The Cl-Br-Na relationship indicates that these waters have been concentrated from seawater, by freezing during glacial times. The Na/Cl ratio (0.25 to 0.35) in the more saline fluids is compatible with cooling down to −30°C, where the most saline waters have been concentrated by a factor of 25 to 30 relative to the parent seawater.The brines formed from seawater within cryogenic troughs, along the subarctic continental margins, around ice sheets. The depressions within which the brines formed are the cryogenic analogues of the classic, evaporitic lagoon. One million years suffice to saturate with brine a 2000km-radius by 1km-depth rock volume at an H2O removal rate of only 2.8 mm/yr. Density-induced brine migration on a continental scale takes place via fissures below the ice.Our calculations, that were performed on a hypothetical ice sheet with dimensions compatible with the Laurentide ice sheet, demonstrate that during 1m.y., a 60m thick cryogenic sediment section could have formed. However, the precipitated minerals (mirabilite and hydrohalite) are repeatedly dispersed by the advance and retreat of the ice sheet, dissolved by melt water-seawater mixtures, and eroded during postglacial uplift, leaving almost no trace in the geological record.The cryogenic brines formed intermittently during and between glacial periods. The repeating advance and retreat of the ice sheets exerted a major control on the direction and intensity of brine flow. The cryogenic concentration of seawater and the migration of brine towards the center of the glaciostatic depression occurred mainly during the build up of the ice sheet, while reversal of the water flow from the center of the cryogenic basin outwards happened upon deglaciation. The flow of the waters in the subsurface was, inevitably, accompanied by significant dilution with melt water from the ice sheets.Using a “granitic” U concentration of 4 ppm and a (Ca-Mg mass balance based) rock/water ratio anywhere between 3.4 and 6.8 kg L−1, a few hundred thousand years of brine-rock interaction are sufficient for the growth of 129I in the most saline Canadian Shield brine to its present concentration (3.4×108 atoms 129I L−1). Hence, both the formation of the saline fluids and their emplacement in their present sites occurred most likely within the Pleistocene.The young age calculated for cryogenic brines in crystalline shields and the dynamic water flow therein should raise concern about the planning and construction of high-grade nuclear waste repositories in such rocks, which are already under way.  相似文献   
126.
 Sediment geochemistry of a shallow (6-m average) reservoir (Lake Waco) was evaluated for the spatial distribution of major and trace elements. Sixty bottom and core samples along a 21-km transect within the reservoir, 18 overbank sediment samples, and 8 rock types in the drainage area were collected and analyzed for major (Al, Ca, Fe) and trace elements (As, Ba, Cr, Cu, Hg, Mn, Ni, Pb, Sr, V, Zn). Elemental concentrations in the reservoir sediments closely correspond to concentrations in the regional rocks and represent a mixture of overbank sediment composition of the tributaries. Elemental concentrations were statistically regressed against Al concentrations in order to establish regional baseline levels and thereby distinguish natural from anthropogenic sources. Spatial geochemical trends, considered in terms of element-to-Al ratio versus V-to-Al ratio, relate to the natural and anthropogenic sources contributing to the elemental concentrations. The spatial elemental distribution in the reservoir, which receive sediments from two mineralogically contrasting basins, reflect textural and mineralogical transition within the reservoir and suggest a progressive mixing of sediment from the tributaries. The spatial elemental distribution and sediment texture suggest that the sediment-source, which determines the sediment-type, has a greater influence on the major- and trace-element distributions in shallow reservoir sediments than bathymetry. Received: 25 September 1997 · Accepted: 3 February 1998  相似文献   
127.
We have examined the effects of aqueous complexation on rates of dissimilatory reductive precipitation of uranium by Shewanella putrefaciens. Uranium(VI) was supplied as sole terminal electron acceptor to Shewanella putrefaciens (strain 200R) in defined laboratory media under strictly anaerobic conditions. Media were amended with different multidentate organic acids, and experiments were performed at different U(VI) and ligand concentrations. Organic acids used as complexing agents were oxalic, malonic, succinic, glutaric, adipic, pimelic, maleic, citric, and nitrilotriacetic acids, tiron, EDTA, and Aldrich humic acid. Reductive precipitation of U(VI), resulting in removal of insoluble amorphous UO2 from solution, was measured as a function of time by determination of total dissolved U. Reductive precipitation was measured, rather than net U(VI) reduction to U(IV), to assess overall U removal rates from solution, which may be used to gauge the influence of chelation on microbial U mineralization. Initial linear rates of U reductive precipitation were found to correlate with stability constants of 1:1 aqueous U(VI):ligand and U(IV):ligand complexes. In the presence of strongly complexing ligands (e.g., NTA, Tiron, EDTA), UO2 precipitation did not occur. Our results are consistent with ligand-retarded precipitation of UO2, which is analogous to ligand-assisted solid phase dissolution but in reverse: ligand exchange with the U4+ aquo cation acts as a rate-limiting reaction moderating coordination of water molecules with U4+, which is a necessary step in UO2 precipitation. Ligand exchange kinetics governing dissociation rates of ligands from U(VI)-organic complexes may also influence overall UO2 production rates, although the magnitude of this effect is unclear relative to the effects of U(IV)-organic complexation. Our results indicate that natural microbial-aqueous systems containing abundant organic matter can inhibit the formation of biogenic amorphous UO2.  相似文献   
128.
The sediment distribution in three narrow, linear basins, two modern and one ancient, in Greece and Italy, was studied and related to changes in basin configuration. The basins are the Plio‐Quaternary Patras–Corinth graben, the Pliocene–Quaternary Reggio–Scilla graben and the middle Tertiary Mesohellenic piggy‐back basin. These basins were formed at different times and under different geodynamic conditions, but in each case, the tectonic evolution produced a narrow area in the basin where the water depth decreased dramatically, forming a strait with a sill. This strait divided the basin into major and minor sub‐basins, and the strait has a similar impact on sedimentary environments in all three basins, even though different depositional environments were formed along the initial basin axis. Predictions for the development of depositional environments in the two modern basins, especially in their straits, are based on the studied ancient basin. In the straits, powerful tidal flows will transport finer sediments to sub‐basins and trapezoidal‐type fan‐deltas will gradually fill up and choke the strait through time. In sub‐basins, according to basin depth, either deltaic (in the shallow minor sub‐basin) or turbiditic (in the deep major sub‐basin) deposits may accumulate. Moreover, an extensive shelf is likely to develop between the strait and major sub‐basin. This shelf will be cross‐cut by canyons and characterized by thin fine‐ to coarse‐grained deposits. These sediment models could be applied to analogous basin geometries around the world. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
129.
In its only natural occurrence known thus far sodium phlogopite is found in a dolomite containing large porphyroblasts of albite, three other magnesium phyllosilicates, dravite-uvite tourmaline, quartz, rutile, and pyrite. Sodium phlogopites are close to the ideal formula NaMg3[AlSi3O10](OH)2, although they may possibly contain additional Li. They are invariably coated by thin rims of potassium phlogopite with octahedral and tetrahedral occupancies different from those of sodium phlogopite. These rims may have prevented the retrograde hydration of sodium phlogopite which seems to be the main reason for its general absence in natural rocks. For the low-grade metamorphic conditions undergone by the dolomite a solvus relationship is indicated between sodium and potassium phlogopite.Sodium phlogopite also coexists, at least prior to the appearance of K phlogopite, with a talc phase containing Na and Al[4] substituting for Si. This type of substitution leading from pure talc to sodium phlogopite was found to extend as far as 36 mole percent. However, the nature of this phase as a genuine solid solution or as a disordered mixed-layer between talc and sodium phlogopite could not be identified as yet. The final phyllosilicate appearing in millimeter-size porphyroblasts is an ordered 11 mixed layer between clinochlore and sodian aluminian talc representing a new mineral.Metamorphic temperatures at the supposedly low water and CO2 fugacities are estimated to have been below 400 °C.  相似文献   
130.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号