首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   14篇
  国内免费   7篇
测绘学   13篇
大气科学   10篇
地球物理   44篇
地质学   102篇
海洋学   8篇
天文学   21篇
综合类   5篇
自然地理   21篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   15篇
  2020年   13篇
  2019年   11篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   11篇
  2014年   14篇
  2013年   19篇
  2012年   13篇
  2011年   11篇
  2010年   10篇
  2009年   11篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1994年   1篇
  1984年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
181.
In the past decade, Volunteered Geographic Information (VGI) has emerged as a new source of geographic information, making it a cheap and universal competitor to existing authoritative data sources. The growing popularity of VGI platforms, such as OpenStreetMap (OSM), would trigger malicious activities such as vandalism or spam. Similarly, wrong entries by unexperienced contributors adds to the complexities and directly impact the reliability of such databases. While there are some existing methods and tools for monitoring OSM data quality, there is still a lack of advanced mechanisms for automatic validation. This paper presents a new recommender tool which evaluates the positional plausibility of incoming POI registrations in OSM by generating near real-time validation scores. Similar to machine learning techniques, the tool discovers, stores and reapplies binary distance-based coexistence patterns between one specific POI and its surrounding objects. To clarify the idea, basic concepts about analysing coexistence patterns including design methodology and algorithms are covered in this context. Furthermore, the results of two case studies are presented to demonstrate the analytical power and reliability of the proposed technique. The encouraging results of this new recommendation tool elevates the need for developing reliable quality assurance systems in OSM and other VGI projects.  相似文献   
182.
Natural Resources Research - In this work, a quantifier-guided ordered weighted averaging (OWA) method was employed for mineral potential mapping (MPM) in Nowchun Cu–Mo prospect, SE Iran. The...  相似文献   
183.
Mathematical Geosciences - A new non-stationary, high-order sequential simulation method is presented herein, aiming to accommodate complex curvilinear patterns when modelling non-Gaussian,...  相似文献   
184.
Hafeez  Amna  Ehsan  Muhsan  Abbas  Ayesha  Shah  Munawar  Shahzad  Rasim 《Natural Hazards》2022,111(2):2097-2115
Natural Hazards - Satellite based thermal anomaly occurs as a substantial precursor for strong earthquakes, as the need for earthquake precursor detection has very important for impending main...  相似文献   
185.
186.
187.
This research is to study the efficiency of displacement reducer fuses, installed behind the caisson quay walls for controlling the dynamic backfill thrust and minimizing the displacement, settlement and tilting of the walls. For this purpose, two types of fuses, Displacement Reducer Panels (DRP) and Displacement Reducer Elements (DRE), were constructed and installed behind the wall. The DRPs were constructed by hollow Polypropylene sheets to reproduce elastoplastic and plastic mechanical behaviors. The DREs were cylindrical stainless-steel dampers, working upon friction mechanism that can reproduce perfect plastic behavior. Here, two series of shaking table 1-g tests were performed with DRP and DRE applications. In this regard, different mechanical behaviors and capacities were considered for fuses against demand thrusts of backfill in order to compare the mitigation tests with no-mitigation cases. Harmonic base motions with constant amplitude and constant frequency were used in the model test. The foundation soil and the backfill soil were constructed with the relative densities of 85 and 25%, respectively, to reproduce non-liquefiable base layer and loose backfill situations in the model, respectively. The results showed remarkable reduction in kinetic energy, dynamic backfill thrust and consequently seaward movement, settlement and inclination of the caisson quay wall in case of using fuses with plastic behaviors behind the wall.  相似文献   
188.
Current land administration systems mainly use 2D plans to define and secure ownership rights associated with properties in high‐rise buildings. These 2D plans may not effectively communicate and manage the spatial complexity associated with multi‐layered and stacked properties in such buildings; additionally, multiple pages of plans (representing sections of the building) are required to represent all ownership boundaries. In response, land administration organizations have been investigating a 3D digital approach to managing information about ownership rights in high‐rise building structures. In this article, Building Information Modeling (BIM) is proposed as a feasible approach for managing land and property information in high‐rise buildings. BIM provides a collaborative, digital and intelligent 3D data environment for managing building information throughout the lifecycle of buildings. However, there is currently no capacity in BIM for recording and representing information about ownership and boundaries of properties, which is core land administration information. Therefore, this article proposes an extension to the BIM standard, which is implemented in a prototype BIM model of a complex building to showcase the potential capability of using BIM for high‐rise land administration and for modeling 3D ownership rights.  相似文献   
189.
Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal case, in which the total field horizontal stresses increase with the reservoir re-pressurization in a manner opposite to their reduction with the reservoir depletion. However, as the most pessimistic case of assuming the total horizontal stresses staying the same over the CO2 injection, faulting could be reactivated on a fault with the least favorable geometry once the reservoir pressure reaches approximately 7.7 MPa. In addition, the initial CO2 injection could lead to a high risk that a fault with a cohesion of less than 5.1 MPa could be activated due to the significant effect of reduced temperature on the field stresses around the injection site.  相似文献   
190.
The seismic response of existing earth dams in Iran is important after an earthquake both to provide emergency supplies and to society as well as to ensure structural safety in engineering terms. Better seismic capacity of earth dam results in less structural damage and reduced impacts following an earthquake disaster. Indirect as well as direct costs following earthquakes have gained much attention from both the engineering and socioec onomic research communities in the last few decades. This study is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. The Avaj earthquake (2002, Iran) was applied to a series of model tests which was conducted to study the response of soil profiles under seismic loading. The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soil seismic response. A combination of several software packages with a generated visual user interface computer code by authors named as “Abbas Converter” were employed to evaluate the variation of shear modulus and damping ratio with shear strain amplitude to assess their effects on site response. The proposed method was applied to the Korzan earth dam of Hamedan province in Iran. Site response analysis using the measured shear wave velocity, estimated modulus reduction, and damping ratio as input parameters produced good agreement with the computed site response in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号