首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   24篇
  国内免费   3篇
测绘学   3篇
大气科学   29篇
地球物理   80篇
地质学   99篇
海洋学   23篇
天文学   81篇
综合类   3篇
自然地理   28篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   13篇
  2020年   14篇
  2019年   15篇
  2018年   14篇
  2017年   14篇
  2016年   17篇
  2015年   11篇
  2014年   16篇
  2013年   17篇
  2012年   16篇
  2011年   19篇
  2010年   16篇
  2009年   28篇
  2008年   19篇
  2007年   21篇
  2006年   12篇
  2005年   9篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1992年   2篇
  1989年   4篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
排序方式: 共有346条查询结果,搜索用时 93 毫秒
51.
Social scientists and science communicators are concerned about the apparent discrepancy between the scientific consensus on climate change (Anderegg et al. Proc Natl Acad Sci 107:12107–12109, 2010; Doran and Zimmerman EOS Trans Am Geophys Union 90:22–3, 2009) and the general public’s views (Knight Environ Sociol 2:101–113, 2016; Lee et al. Nat Clim Chang 5:1014–1020, 2015). It is reasoned that increased public awareness and perceived threat of climate change may pressure governments to enact policy to counteract climate change (e.g. setting stringent carbon emissions targets). Despite a logical link between public awareness and government-set emissions targets, this relationship remains untested. We examined the relationship between public awareness about and perceived threat of climate change and governmental emissions targets across 71 countries and 1 region. We found a positive association between the proportions of a country’s population that are aware of climate change and the unconditional emissions reduction targets set by that country in the Paris Agreement (Rogelj et al. Nature 534:631–639, 2016). However, the proportion of people in a country who perceive climate change as a personal threat was not associated with higher emissions reduction targets. Our results suggest that public awareness may be an important part of garnering the public support required for policies designed to mitigate climate change to succeed.  相似文献   
52.
Climate policy uncertainty significantly hinders investments in low-carbon technologies, and the global community is behind schedule to curb carbon emissions. Strong actions will be necessary to limit the increase in global temperatures, and continued delays create risks of escalating climate change damages and future policy costs. These risks are system-wide, long-term and large-scale and thus hard to diversify across firms. Because of its unique scale, cost structure and near-term availability, Reducing Emissions from Deforestation and forest Degradation in developing countries (REDD+) has significant potential to help manage climate policy risks and facilitate the transition to lower greenhouse gas emissions. ‘Call’ options contracts in the form of the right but not the obligation to buy high-quality emissions reduction credits from jurisdictional REDD+ programmes at a predetermined price per ton of CO2 could help unlock this potential despite the current lack of carbon markets that accept REDD+ for compliance. This approach could provide a globally important cost-containment mechanism and insurance for firms against higher future carbon prices, while channelling finance to avoid deforestation until policy uncertainties decline and carbon markets scale up.

Key policy insights

  • Climate policy uncertainty discourages abatement investments, exposing firms to an escalating systemic risk of future rapid increases in emission control expenditures.

  • This situation poses a risk of an abatement ‘short squeeze,’ paralleling the case in financial markets when prices jump sharply as investors rush to square accounts on an investment they have sold ‘short’, one they have bet against and promised to repay later in anticipation of falling prices.

  • There is likely to be a willingness to pay for mechanisms that hedge the risks of abruptly rising carbon prices, in particular for ‘call’ options, the right but not the obligation to buy high-quality emissions reduction credits at a predetermined price, due to the significantly lower upfront capital expenditure compared to other hedging alternatives.

  • Establishing rules as soon as possible for compliance market acceptance of high-quality emissions reductions credits from REDD+ would facilitate REDD+ transactions, including via options-based contracts, which could help fill the gap of uncertain climate policies in the short and medium term.

  相似文献   
53.
"Contamination of heating oil with MTBE could result in increasing the environmental impact of subsurface heating oil releases."  相似文献   
54.
Extensive loess covered areas characterize the mildly arid areas of western Israel, where average annual rainfall is 280 mm. Hydrological data point to a peculiar hydrological behavior of the ephemeral streams. The frequency of sporadic flash floods is very high. However, even in extreme rain events peak discharges are extremely low. Hydrographs are usually characterized by very steep rising and falling limbs, representative of saturated areas, extending over a limited part of the watershed. Following this observation we advanced the hypothesis that storm channel runoff originated in the channel itself, with negligible contribution from the adjoining hillslopes. The study was based on two complementary approaches. The hydrological approach was based on the detailed analysis of rainfall–runoff relationships in a small watershed (11 km2) and on the analysis of the hydrological characteristics of the drainage network. The second approach was based on the toposequence concept. Several boreholes were dug along a hillslope 400 m long. Chemical data obtained show no significant difference in the downslope direction. Similar results were also obtained for the particle size distribution and soil moisture content. Data obtained perfectly fit the concept of ‘Partial Area Contribution’ as it presents an extreme case of hydrological discontinuity at the hillslope–channel interface. The lack of pedological trends in the downslope direction is an additional indication of the limited connectivity between the hillslopes and the adjoining channel. The limited connectivity is attributed to the prevalence of low rain intensities in the study area. The present study is also relevant to our understanding of pedological processes in dryland areas. The high frequency of intermittent low intensity rainstorms limits runoff generation and flow distances, and casts doubt on the general application of the toposequence approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
55.
Rhenium–osmium geochronometry for samples with low Re and complex matrices requires improved Re extraction methods. Here, we investigate plausible controls on efficiency and efficacy of Re extraction during our anion resin bead purification. Four different protocols are compared, each isolating a single variable to test. Rhenium concentrations for solutions at each step of each protocol document differences in chemical recovery/yield. The negative‐thermal ionisation mass spectrometry (N‐TIMS) signal intensity serves as a proxy for Re yield and purity. These data document correlations between the N‐TIMS signal intensity and (a) the duration of anion resin bead conditioning prior to loading with Re‐bearing solution, and (b) both duration and strength of nitric acid used during rinsing of the Re‐loaded anion resin bead. The optimal protocol improved Re signal intensity around fourteen times compared with our current Re extraction protocol, an aggregate of 2.4 times improvement in chemical recovery (yield) and 5.8 times improvement in emission efficiency (purity). Repeated N‐TIMS isotopic measurements on our in‐house Re standard solution (1407) verify that our optimal protocol‐3 does not fractionate Re isotopes. The improved anion resin bead method considerably lowers the Re detection limit and allows Re‐Os isotopic analysis of picogram‐level Re hosted in geological samples with complex matrices.  相似文献   
56.
57.
Permafrost covers approximately 24% of the Northern Hemisphere, and much of it is degrading, which causes infrastructure failures and ecosystem transitions. Understanding groundwater and heat flow processes in permafrost environments is challenging due to spatially and temporarily varying hydraulic connections between water above and below the near-surface discontinuous frozen zone. To characterize the transitional period of permafrost degradation, a three-dimensional model of a permafrost plateau that includes the supra-permafrost zone and surrounding wetlands was developed. The model is based on the Scotty Creek basin in the Northwest Territories, Canada. FEFLOW groundwater flow and heat transport modeling software is used in conjunction with the piFreeze plug-in, to account for phase changes between ice and water. The Simultaneous Heat and Water (SHAW) flow model is used to calculate ground temperatures and surface water balance, which are then used as FEFLOW boundary conditions. As simulating actual permafrost evolution would require hundreds of years of climate variations over an evolving landscape, whose geomorphic features are unknown, methodologies for developing permafrost initial conditions for transient simulations were investigated. It was found that a model initialized with a transient spin-up methodology, that includes an unfrozen layer between the permafrost table and ground surface, yields better results than with steady-state permafrost initial conditions. This study also demonstrates the critical role that variations in land surface and permafrost table microtopography, along with talik development, play in permafrost degradation. Modeling permafrost dynamics will allow for the testing of remedial measures to stabilize permafrost in high value infrastructure environments.  相似文献   
58.
Depositional environments along the tidal river downstream of Óbidos have been proposed as important sinks for up to one third of the sediment discharge from the Amazon River. However, the morphology of the intertidal floodplain and the dynamics of sediment exchange along this reach have yet to be described. River-bank surveys in five regions along the Amazon tidal river reveal a distinct transition in bank morphology between the upper, central and lower reaches of the tidal river. The upper tidal-river floodplain is defined by prominent natural levees that control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Greater tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. In the lower tidal river, the floodplain morphology closely resembles marine intertidal environments (e.g. mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative influence and coupling of fluvial and tidal dynamics. © 2018 John Wiley & Sons, Ltd.  相似文献   
59.
Identification of major nitrate sources that adversely impact groundwater quality in municipal well capture zones in areas of emerging nitrate contamination is essential to minimize leaching and prevent exceedance of the nitrate drinking water standard. Vertical profiles of nitrate leachate in deep soils provide an estimate of the amount of nitrate in transit beneath irrigated, row-cropped fields; depths of peak leachate; and the approximate rate of downward movement. Profiles of pore-water soil-nitrate concentrations in thick 60-feet (~18 m), fine-textured soils near Hastings, Nebraska clearly indicate that considerably more nitrate leached beneath furrow-irrigated than center-pivot irrigated fields. Peak leaching appeared to correlate with recorded periods of poor weather conditions during some growing seasons and may best be controlled by “spoon feeding” fertilizer to the crop through the sprinkler irrigation system at times of nutrient need. The presence of trace levels of atrazine and deethylatrazine to 60 feet (18 m) in core samples indicates that larger, more complex anthropogenic molecules also leach through the fine-textured soils. The light δ15NNO3 values in the surficial groundwater beneath fertilized and irrigated cropland indicate that ammonium fertilizer is a major N source and suggest that the natural soil-N contribution is negligible. δ15NNO3 values were most enriched in irrigation wells located within municipal well capture zones downgradient of a large feedlot. Dual isotope method (DIM) δ15NNO3 and δ18ONO3 values suggest that the Hastings’ municipal wells farther downgradient are contaminated with a mixture of nitrate from manure and commercial ammonium-based fertilizer. DIM values indicate an absence of denitrification, which has implications for long-term management of the water resources.  相似文献   
60.
Lateral movements of alluvial river channels control the extent and reworking rates of alluvial fans, floodplains, deltas, and alluvial sections of bedrock rivers. These lateral movements can occur by gradual channel migration or by sudden changes in channel position (avulsions). Whereas models exist for rates of river avulsion, we lack a detailed understanding of the rates of lateral channel migration on the scale of a channel belt. In a two-step process, we develop here an expression for the lateral migration rate of braided channel systems in coarse, non-cohesive sediment. On the basis of photographic and topographic data from laboratory experiments of braided channels performed under constant external boundary conditions, we first explore the impact of autogenic variations of the channel-system geometry (i.e. channel-bank heights, water depths, channel-system width, and channel slope) on channel-migration rates. In agreement with theoretical expectations, we find that, under such constant boundary conditions, the laterally reworked volume of sediment is constant and lateral channel-migration rates scale inversely with the channel-bank height. Furthermore, when channel-bank heights are accounted for, lateral migration rates are independent of the remaining channel geometry parameters. These constraints allow us, in a second step, to derive two alternative expressions for lateral channel-migration rates under different boundary conditions using dimensional analysis. Fits of a compilation of laboratory experiments to these expressions suggest that, for a given channel bank-height, migration rates are strongly sensitive to water discharges and more weakly sensitive to sediment discharges. In addition, external perturbations, such as changes in sediment and water discharges or base level fall, can indirectly affect lateral channel-migration rates by modulating channel-bank heights. © 2019 The Author. Earth Surface Processes and Landforms published by John Wiley & Sons, Ltd. © 2019 The Author. Earth Surface Processes and Landforms published by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号