首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
  国内免费   3篇
测绘学   1篇
大气科学   18篇
地球物理   15篇
地质学   27篇
海洋学   13篇
天文学   7篇
综合类   2篇
自然地理   6篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1992年   6篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有89条查询结果,搜索用时 933 毫秒
51.
52.
Many lakes in Southeastern Wisconsin(the metropolitan-Milwaukee area) are gradually becoming increasingly "salty".While these waterbodies would not be considered presently to be saline lakes,there has been a rapid increase in the chloride concentrations in most of these lakes over the last 30 years,with the lakes increasing from a mean chloride concentration of about 19 mg/L to over 100 mg/L in some cases.While ecological impacts can be expected when chloride values exceed 250 mg/L,the rate of increase presents a basis for concern,especially since the underlying geology of the region is based on limestone/dolomite which is deficient in chlorides.Thus,the origin of the chlorides is anthropogenic:human and industrial wastewaters(treatment of which has effected improvements in trophic status but has not affected other water-borne contaminants) and winter de-icing practices based upon large quantities of sodium chloride are major contributors to the increasing concentrations of chloride in the region's waterways.Without taking remedial measures,the rate of salinization is expected to continue to increase,resulting,ultimately,in the alteration of the freshwater systems in the region.  相似文献   
53.
Eutrophication is the natural ageing process of lakes. It is characterized by a geologically slow shift from in-lake biological production driven by allochthonous (external to the water body) loading of nutrients, to production driven by autochthonous (in-lake) processes. This shift typically is accompanied by changes in species and biotic community composition, as an aquatic ecosystem is ultimately transformed into a terrestrial biome. However, this typically slow process can be greatly accelerated by human intervention in the natural biogeochemical cycling of nutrients within a watershed; the resulting cultural eutrophication can create conditions inimical to the continued use of the water body for human-driven economic purposes. Excessive algal and rooted plant growth, degraded water quality, extensive deoxygenation of the bottom water layers and increased fish biomass accompanied by decreased harvest quality, are some features of this process. Following the Second World War, concern with cultural eutrophication achieved an intensity that spurred a significant research effort, culminating in the identification of phosphorus as the single most significant, and controllable, element involved in driving the eutrophication process. During the late 1960s and throughout the 1970s, much effort was devoted to reducing phosphorus in wastewater effluents, primarily in the developed countries of the temperate zone. These efforts generally resulted in the control of eutrophication in these countries, albeit with varying degrees of success. The present effort in the temperature zone, comprising mostly developed nations, has now shifted to the control of diffuse sources of a broader spectrum of contaminants that impact human water use. In the developing countries of the inter-tropical zone, however, rapidly expanding populations, a growing industrial economy and extensive urbanization have only recently reached an intensity at which cultural eutrophication can no longer be ignored. Further, initial attempts at applying temperate zone control measures in this region have been largely unsuccessful. Modification of the temperate zone eutrophication paradigm will be needed, especially to address the differing climatic and hydrological conditions, if cultural eutrophication is to be contained in this region, where eutrophication-related diseases continue to be a primary cause of human distress.  相似文献   
54.
沈中延  肖安成  王亮  郭璟  魏国齐  张林 《岩石学报》2010,26(4):1313-1321
前人认为四川北部米仓山地区下三叠统内部各组地层之间是整合接触,然而通过构造和沉积学的研究发现下三叠统内部(奥伦尼阶)存在一个区域不整合面。在沉积上表现为环米仓山地区广泛发育的陆相和海相碎屑岩,与下伏地层呈不整合接触。地震剖面上表现为不整合面上下的变形特征不一致、不整合面下部地层被削截、古构造的存在等等,通过对古褶皱和古断裂的平面投影,发现古构造走向为东-西向,与勉略构造带走向一致。综合区域大地构造历史,笔者认为在早三叠世奥伦尼期(约249.7~245.0Ma)南秦岭造山带和上扬子地块就已经发生碰撞,碰撞引起了米仓山地区强烈的构造变形,形成这一区域不整合面。该碰撞时间不一定是南秦岭造山带和上扬子地块在此处的初始碰撞时间。  相似文献   
55.
The effects of soil minerals on chromate (CrVIO4 2-, noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (γ-Al2O3), titanium oxide (TiO2, P-25, primarily anatase), and silica (SiO2). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al2O3; and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO2 and TiO2 . The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, k obs, increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 μM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was:
  相似文献   
56.
57.
Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ13C compositions of MTBE in groundwater samples from the plume showed no significant 13C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O2. The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7‰ in the MTBE δ13C composition and an isotope enrichment factor (ε) of −1.53‰ when dissolved O2 was not limiting. However, for the low dissolved O2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7‰, corresponding to an ε value of −0.22‰ to −0.24‰. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O2. Under low O2 conditions, the lower fractionating species have been shown to govern overall MTBE C-isotope fractionation during biodegradation, confirming the results of previous laboratory experiments mixing pure cultures. This implies that significant aerobic MTBE biodegradation could occur under the low dissolved O2 concentration that typifies the reactive fringe zone of MTBE plumes, without producing detectable changes in the MTBE δ13C composition. This observed insensitivity of C isotope enrichment to MTBE biodegradation could lead to significant underestimation of aerobic MTBE biodegradation at field scale, with an unnecessarily pessimistic performance assessment for natural attenuation. Site-specific C isotope enrichment factors are, therefore, required to reliably quantify MTBE biodegradation, which may limit CSIA as a tool for the in situ assessment of MTBE biodegradation in groundwater using only C isotopes.  相似文献   
58.
The formation of beach megacusps along the shoreline of southern Monterey Bay, CA, is investigated using time-averaged video and simulated with XBeach, a recently developed coastal sediment transport model. Investigations focus on the hydrodynamic role played by the bay's ever-present rip channels. A review of four years of video and wave data from Sand City, CA, indicates that megacusps most often form shoreward of rip channels under larger waves (significant wave height (Hs) = 1.5–2.0 m). However, they also occasionally appear shoreward of shoals when waves are smaller (Hs ~ 1 m) and the mean water level is higher on the beach. After calibration to the Sand City site, XBeach is shown to hindcast measured shoreline change moderately well (skill = 0.41) but to overpredict the erosion of the swash region and beach face. Simulations with small to moderate waves (Hs = 0.5–1.2 m) suggest, similar to field data, that megacusps will form shoreward of either rip channels or shoals, depending on mean daily water level and pre-existing beach shape. A frequency-based analysis of sediment transport forcing is performed, decomposing transport processes to the mean, infragravity, and very-low-frequency (VLF) contributions for two highlighted cases. Results indicate that the mean flow plays the dominant role in both types of megacusp formation, but that VLF oscillations in sediment concentration and advective flow are also significant.  相似文献   
59.
Reconstruction of geological structures has the potential to provide additional insight into the effect of the depositional history on the current-day geomechanical and hydro-geologic state. Accurate modeling of the reconstruction process is, however, complex, necessitating advanced procedures for the prediction of fault formation and evolution within fully coupled geomechanical, fluid flow and temperature fields. In this paper, a 3-D computational approach is presented that is able to forward model complex structural evolution with multiple intersecting faults that exhibit large relative movement within a coupled geomechanical/flow environment. The approach adopts the Lagrangian method, complemented by robust and efficient automated adaptive meshing techniques, an elasto-plastic constitutive model based on critical state concepts, and global energy dissipation regularized by inclusion of fracture energy in the equations governing state variable evolution. The proposed model is validated by comparison of 2-D plane strain and 3-D thin-slice predictions of a bench-scale experiment, and then applied to two conceptual coupled geomechanical/fluid flow field-scale benchmarks.  相似文献   
60.
Results from the 14 land surface parameterization schemes involved in the PILPS-RICE Workshop are compared for a soya crop growing season (from June to September). During this period, the transpiration flux dominates the total surface evapotranspiration and observed data from HAPEX-MOBILHY are available for comparison. Results indicate that during the month of June half of the models fall within the uncertainty range of the observations. The scatter between models behaviour is explained by three major reasons:
• The functional dependency between soil moisture and transpiration;
• the initial moisture content at the beginning of the period;
• the vertical discretization within the soil and the extension of the root system that defines the soil water holding capacity for plants
Examination of diurnal cycles of evaporation reveals that formulations based on the supply-demand concept are very sensitive to the specification of the root zone.This analysis underlines the need for more sensitivity experiments to be done with the current forcing data set and more detailed datasets to be collected in future field experiments (e.g. latent heat flux during all the growing season, root zone distribution).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号