首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   13篇
  国内免费   4篇
测绘学   8篇
大气科学   90篇
地球物理   96篇
地质学   126篇
海洋学   46篇
天文学   70篇
综合类   31篇
自然地理   12篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   9篇
  2015年   4篇
  2014年   37篇
  2013年   26篇
  2012年   9篇
  2011年   232篇
  2010年   12篇
  2009年   14篇
  2008年   16篇
  2007年   14篇
  2006年   7篇
  2005年   10篇
  2004年   6篇
  2003年   7篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1974年   1篇
  1970年   1篇
  1961年   1篇
排序方式: 共有479条查询结果,搜索用时 234 毫秒
11.
The lower reaches of the Coatzacoalcos River in southeast Mexico is an area of intense industrial development. The physico-chemical characteristics of the area have exhibited differences over the years. Apparently from the associated outcroppings of limestone in the Uxpanapa River Basin, the major elements that are dissolved show higher concentrations of Ca, Mg and HCO3 in the waters supplied by this river. The water in the Calzadas River contains high concentrations of Ca, SO4 and HCO3 that are associated with the saline domes crossed by this river. Due to industrial discharges, the sulfate concentration is very high in the water and air during April. Nitrate concentration diminishes with salinity. Higher nitrate as well as nitrite and ammonia levels are present during flood season. Phosphate concentration, associated with high oxygen levels, is higher in January. Zn, Cu and Cr are higher during the dry season (April) when dilution is minimal and low levels of TOC are present. The smaller concentrations of Zn and Cu observed in January are associated with high TOC values in water. The lower levels of Cr present in August are associated with high amounts of suspended matter. Pajaritos Lagoon and Teapa-L, with large industrial discharges, have the highest nutrient and dissolved metal concentrations in the area. Air particles smaller than 2.5 m contain Fe, V, Ti, Cu, Zn, and high amounts of S. These anomalous concentrations of sulfates and metals are attributed to anthropogenic sources.  相似文献   
12.
13.
Amounts of tar stranded on Florida beaches were determined periodically over one year (September 1979–October 1980). Results show that tar fouling of southeast Florida beaches is an order of magnitude greater than the rest of the state. This may result from the extensive ship traffic in the Straits of Florida. There is no evidence that any Florida beaches received increased amounts of tar as a result of the 1979 Ixtoc-1 blowout in the southern Bay of Campeche. There is also no evidence that the amounts of tar on southeast Florida beaches have increased over amounts measured in API studies conducted in 1958 and 1971.  相似文献   
14.
The COMPTEL unidentified source GRO J 1411-64 was observed by INTEGRAL and XMM-Newton in 2005. The Circinus Galaxy is the only source detected within the 4σ location error of GRO J1411-64, but in here excluded as the possible counterpart. At soft X-rays, 22 reliable and statistically significant sources (likelihood >10) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. At the best location of the source, detections at hard X-rays show only upper limits, which, together with MeV results obtained by COMPTEL suggest the existence of a peak in power output located somewhere between 300–700 keV for the so-called low state. Such a spectrum resembles those in blazars or microquasars, and might suggest at work by the models accordingly. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons, shows that it is hard to comply with all observational constrains. This fact and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, what is discussed here.  相似文献   
15.
MAGIA is a mission approved by the Italian Space Agency (ASI) for Phase A study. Using a single large-diameter laser retroreflector, a large laser retroreflector array and an atomic clock onboard MAGIA we propose to perform several fundamental physics and absolute positioning metrology experiments: VESPUCCI, an improved test of the gravitational redshift in the Earth?CMoon system predicted by General Relativity; MoonLIGHT-P, a precursor test of a second generation Lunar Laser Ranging (LLR) payload for precision gravity and lunar science measurements under development for NASA, ASI and robotic missions of the proposed International Lunar Network (ILN); Selenocenter (the center of mass of the Moon), the determination of the position of the Moon center of mass with respect to the International Terrestrial Reference Frame/System (ITRF/ITRS); this will be compared to the one from Apollo and Lunokhod retroreflectors on the surface; MapRef, the absolute referencing of MAGIA??s lunar altimetry, gravity and geochemical maps with respect to the ITRF/ITRS. The absolute positioning of MAGIA will be achieved thanks to: (1) the laboratory characterization of the retroreflector performance at INFN-LNF; (2) the precision tracking by the International Laser Ranging Service (ILRS), which gives two fundamental contributions to the ITRF/ITRS, i.e. the metrological definition of the geocenter (the Earth center of mass) and of the scale of length; (3) the radio science and accelerometer payloads; (4) support by the ASI Space Geodesy Center in Matera, Italy. Future ILN geodetic nodes equipped with MoonLIGHT and the Apollo/Lunokhod retroreflectors will become the first realization of the International Moon Reference Frame (IMRF), the lunar analog of the ITRF.  相似文献   
16.
Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars?? satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) ?teins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.  相似文献   
17.
We investigate the secular dynamics of two-planet coplanar systems evolving under mutual gravitational interactions and dissipative forces. We consider two mechanisms responsible for the planetary migration: star-planet (or planet-satellite) tidal interactions and interactions of a planet with a gaseous disc. We show that each migration mechanism is characterized by a specific law of orbital angular momentum exchange. Calculating stationary solutions of the conservative secular problem and taking into account the orbital angular momentum leakage, we trace the evolutionary routes followed by the planet pairs during the migration process. This procedure allows us to recover the dynamical history of two-planet systems and constrain parameters of the involved physical processes.  相似文献   
18.
The primary poles for (243) Ida and (134340) Pluto and its satellite (134340) Pluto : I Charon were redefined in the IAU Working Group on Cartographic Coordinates and Rotational Elements (WGCCRE) 2006 report (Seidelmann et al. in Celest Mech Dyn Astr 98:155, 2007), and 2009 report (Archinal et al. in Celest Mech Dyn Astr 109:101, 2011), respectively, to be consistent with the primary poles of similar Solar System bodies. However, the WGCCRE failed to take into account the effect of the redefinition of the poles on the values of the rotation angle W at J2000.0. The revised relationships in Table 3 of Archinal et al. 2011) are $$\begin{array}{llll} W & = & 274^{\circ}.05 +1864^{\circ}.6280070\, d\;{\rm for\; (243)\,Ida} \\ W & = & 302^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto,\; and}\\ W & = & 122^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto : I \,Charon}\end{array}$$ where d is the time in TDB days from J2000.0 (JD2451545.0).  相似文献   
19.
We give an expression for the Lindblad torque acting on a low-mass planet embedded in a protoplanetary disk that is valid even at locations where the surface density or temperature profile cannot be approximated by a power law, such as an opacity transition. At such locations, the Lindblad torque is known to suffer strong deviation from its standard value, with potentially important implications for type I migration, but the full treatment of the tidal interaction is cumbersome and not well suited to models of planetary population synthesis. The expression that we propose retains the simplicity of the standard Lindblad torque formula and gives results that accurately reproduce those of numerical simulations, even at locations where the disk temperature undergoes abrupt changes. Our study is conducted by means of customized numerical simulations in the low-mass regime, in locally isothermal disks, and compared to linear torque estimates obtained by summing fully analytic torque estimates at each Lindblad resonance. The functional dependence of our modified Lindblad torque expression is suggested by an estimate of the shift of the Lindblad resonances that mostly contribute to the torque, in a disk with sharp gradients of temperature or surface density, while the numerical coefficients of the new terms are adjusted to seek agreement with numerics. As side results, we find that the vortensity related corotation torque undergoes a boost at an opacity transition that can counteract migration, and we find evidence from numerical simulations that the linear corotation torque has a non-negligible dependency upon the temperature gradient, in a locally isothermal disk.  相似文献   
20.
We investigate the dynamical evolution of hierarchical three-body systems under the effect of tides, when the ratio of the orbital semi-major axes is small and the mutual inclination is relatively large (greater than 20°). Using the quadrupolar non-restricted approximation for the gravitational interactions and the viscous linear model for tides, we derive the averaged equations of motion in a vectorial formalism which is suitable to model the long-term evolution of a large variety of exoplanetary systems in very eccentric and inclined orbits. In particular, it can be used to derive constraints for stellar spin-orbit misalignment, capture in Cassini states, tidal-Kozai migration, or damping of the mutual inclination. Because our model is valid for the non-restricted problem, it can be used to study systems of identical mass or for the outer restricted problem, such as the evolution of a planet around a binary of stars. Here, we apply our model to various situations in the HD 11964, HD 80606, and HD 98800 systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号