全文获取类型
收费全文 | 2459篇 |
免费 | 404篇 |
国内免费 | 725篇 |
专业分类
测绘学 | 358篇 |
大气科学 | 437篇 |
地球物理 | 246篇 |
地质学 | 1419篇 |
海洋学 | 448篇 |
天文学 | 70篇 |
综合类 | 267篇 |
自然地理 | 343篇 |
出版年
2024年 | 25篇 |
2023年 | 84篇 |
2022年 | 96篇 |
2021年 | 102篇 |
2020年 | 86篇 |
2019年 | 99篇 |
2018年 | 123篇 |
2017年 | 62篇 |
2016年 | 77篇 |
2015年 | 73篇 |
2014年 | 144篇 |
2013年 | 127篇 |
2012年 | 117篇 |
2011年 | 121篇 |
2010年 | 118篇 |
2009年 | 115篇 |
2008年 | 122篇 |
2007年 | 115篇 |
2006年 | 122篇 |
2005年 | 123篇 |
2004年 | 120篇 |
2003年 | 84篇 |
2002年 | 109篇 |
2001年 | 94篇 |
2000年 | 72篇 |
1999年 | 83篇 |
1998年 | 63篇 |
1997年 | 56篇 |
1996年 | 75篇 |
1995年 | 66篇 |
1994年 | 55篇 |
1993年 | 55篇 |
1992年 | 60篇 |
1991年 | 61篇 |
1990年 | 53篇 |
1989年 | 50篇 |
1988年 | 42篇 |
1987年 | 44篇 |
1986年 | 42篇 |
1985年 | 34篇 |
1984年 | 34篇 |
1983年 | 34篇 |
1982年 | 31篇 |
1981年 | 13篇 |
1980年 | 15篇 |
1979年 | 12篇 |
1965年 | 8篇 |
1959年 | 11篇 |
1957年 | 7篇 |
1936年 | 5篇 |
排序方式: 共有3588条查询结果,搜索用时 0 毫秒
81.
上海水源地毗邻湖库浮游植物群落结构的季节变化及其影响因子 总被引:1,自引:0,他引:1
为改善城市水源地及毗邻水域的水质管理,2019年11月至2020年11月分别在青草沙水库中央沙水域和金泽水库南白荡水域开展了4个季度的采样调查.运用综合营养状态指数(TLI(Σ))对水体营养状态等级进行综合评估,并采用主成分分析(PCA)、冗余分析(RDA)和相关性分析等方法研究了浮游植物群落特征与环境因子的关系.结果表明:中央沙和南白荡水域TLI (Σ)范围分别为57.5~59.0、54.1~56.1,2个水体均处于轻度富营养状态;两者分别鉴定出浮游植物7门104属184种、8门96属172种;蓝藻门是中央沙水域全年浮游植物构成的主要门类,其次为硅藻门、绿藻门,而南白荡浮游植物群落结构季节性演替明显,优势门类由硅藻门/隐藻门-蓝藻门-隐藻门/硅藻门变化,浮游植物细胞密度季节平均值变化范围分为3.00×107~1.61×108 cells/L、4.29×106~6.59×107 cells/L;鉴定出2个水体浮游植物的优势类群分别有4门17属、5门13属,中央沙水域全年的主要优势类群为假鱼腥藻属(Pseudanabaena)和长孢藻属(Dolichospermum),而南白荡春冬季的主要优势类群为小环藻属(Cyclotella)、隐藻属(Cryptomonas)和蓝隐藻属(Chroomonas),夏秋季主要优势类群为假鱼腥藻属、平裂藻属(Merismopedia)和微囊藻属(Microcystis);中央沙水域浮游植物群落结构变化主要与总氮、总磷、水温等环境因子有关,而南白荡主要与水温、总溶解性盐等环境因子有关,水体流通性差异对此起关键作用. 相似文献
82.
江南大陆——扬子江以南之加里东宁山脉 总被引:1,自引:0,他引:1
扬子江以南之沅水流域,汨罗水流域,修水流域,乐安江及之江以北,户山黄山以南之地域,亦即桂之极北,黔之东湘之西及北,赣之北,皖之极南,浙之西北,泥盆纪以前地层,包括震旦前纪,震旦纪,寒武纪,奥陶纪及志留纪,分布甚广,造成一约略 相似文献
83.
Runt结构域转录因子家族(Runx)在哺乳动物体内存在三种基因型,分别起着造血,骨生成和控制上皮细胞增殖的作用。本文应用反转录和c DNA末端快速扩增(RACE)技术,首次在凡纳滨对虾(Litopenaeus vannamei)中克隆并测序了一种Runt(lvrunt)基因全长。lvrunt c DNA全长1754bp,含有1个663bp长的开放阅读框,编码221个氨基酸,理论分子量为23.6k Da,具有Runt-family结构域。对凡纳滨对虾鳃、肠、肝胰腺、类淋巴、心脏、肌肉组织和血淋巴lvrunt的转录特征进行分析,结果显示该基因几乎特异性地在血淋巴细胞中表达,而在其他组织中表达较低。肌肉注射重组造血激素蛋白(r AST)或白斑综合征病毒(WSSV)粗提液均可显著提高lvrunt在凡纳滨对虾体内的转录表达。上述结果提示,lvrunt主要在血细胞发挥作用,可能作为造血激素的下游基因起到调节血细胞增殖和分化的作用,并在受到病毒感染后,参与提升血细胞数量或者促进血细胞分化的过程。 相似文献
84.
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau. 相似文献
85.
86.
网络实时动态测量(real-time kinematic, RTK)技术可为大范围区域用户提供实时高精度的定位服务,然而目前该技术对卫星导航定位(satellite navigation and positioning,SNAP)基准站网密度要求较高。为了满足稀疏大尺度SNAP基准站网区域的高精度定位服务需求,提出了一种基于虚拟大气约束(virtual atmosphere constrait, VAC)的网络RTK服务方法,首先构建非组合双差观测值模型,快速解算并固定SNAP基准站基线模糊度;然后提取基线大气延迟,分别建立斜路径电离层和天顶对流层误差模型;最后将内插的大气延迟及其精度信息作为虚拟观测值,提升终端RTK的定位性能。采用中国西北的SNAP基准站网数据(平均站间距为205.1 km)和网内外6个流动站数据进行RTK验证,结果表明,所提方法可以满足大尺度参考网下用户的高精度定位需求,相比传统的虚拟基准站技术,VAC服务模式下的终端定位精度、初始化速度平均分别提升61.64%和9.96%,该模式下测试终端固定解水平和高程方向的平均均方根分别为1.19 cm、2.73 cm;采用多次初始化进行验证,平均88.78%的时段在2个历元内即可完成初始化;VAC服务模式对大尺度SNAP基准站网内外用户均具有较好的适应性。 相似文献
87.
88.
89.
梁子湖水体P的季节变化与沉积物P释放初步研究 总被引:4,自引:0,他引:4
采用分级测定的方法对梁子湖沉积物中无机磷酸盐进行了分析,测定了梁子湖水体P的季节变化,并以室内模拟的方法研究梁子湖沉积物在pH值和温度控制下P的释放特征。研究表明,梁子湖水体P的含量呈明显的季节变化,冬季高,夏季低。沉积物无机磷(P i)中以钙磷(Ca—P)为主(55%~61%),铁磷(Fe—P)次之(28%~33%),铝磷(A l—P)最少(3%~5%)。在梁子湖的入水口和出水口,由于沉积环境影响到P的形态,P的释放明显较湖心高。在试验初期,由于扰动的影响,使得P的释放在第1天比第2天和第3天高,其后P的释放量则迅速增加。温度对P释放影响明显,其具体表现为,30℃时P释放达到峰值的时间比4℃时提前4 d,而且前者峰值比后者高出9倍。pH值对沉积物P释放同样有明显的影响,与正常状态下的湖水条件(pH值为8.5)相比,偏酸(pH值为5.5)和偏碱(pH值为11.5)条件下,P的释放量增加。 相似文献
90.
琼东南盆地深水区构造热演化特征及其影响因素分析 总被引:4,自引:1,他引:4
To reveal the tectonic thermal evolution and influence factors on the present heat flow distribution, based on 154 heat flow data, the present heat flow distribution features of the main tectonic units are first analyzed in detail, then the tectonic thermal evolution histories of 20 profiles are reestablished crossing the main deep-water sags with a structural, thermal and sedimentary coupled numerical model. On the basis of the present geothermal features, the Qiongdongnan Basin could be divided into three regions: the northern shelf and upper slope region with a heat flow of 50–70 m W/m2, most of the central depression zone of 70–85 m W/m2, and a NE trending high heat flow zone of 85–105 m W/m2 lying in the eastern basin. Numerical modeling shows that during the syn-rift phase, the heat flow increases generally with time, and is higher in basement high area than in its adjacent sags. At the end of the syn-rift phase, the heat flow in the deepwater sags was in a range of 60–85 m W/m2, while in the basement high area, it was in a range of 75–100 m W/m2. During the post-rift phase, the heat flow decreased gradually, and tended to be more uniform in the basement highs and sags. However, an extensive magmatism, which equivalently happened at around 5 Ma, has greatly increased the heat flow values, and the relict heat still contributes about 10–25 m W/m2 to the present surface heat flow in the central depression zone and the southern uplift zone. Further analyses suggested that the present high heat flow in the deep-water Qiongdongnan Basin is a combined result of the thermal anomaly in the upper mantle, highly thinning of the lithosphere, and the recent extensive magmatism. Other secondary factors might have affected the heat flow distribution features in some local regions. These factors include basement and seafloor topography, sediment heat generation, thermal blanketing, local magmatic injecting and hydrothermal activities related to faulting and overpressure. 相似文献