排序方式: 共有76条查询结果,搜索用时 22 毫秒
41.
遥感影像理解智能化系统与模型集成方法 总被引:11,自引:0,他引:11
智能化遥感影像分析理解是当前遥感地学分析中的研究热点。本文通过分析当前智能化方法在应用中存在的两个主要问题,指出了智能化遥感影像分析向基于多特征单元为分析对象转变的必要性以及如何在分析过程中更好的融合知识。在此基础上,介绍了多特征单元遥感影像分析和基于神经网络的知识处理的基本思想。并对如何建立基于知识智能计算的多特征单元遥感影像分析理解方法体系进行了探讨,给出了概念框架图。 相似文献
42.
集成夜间灯光数据与Landsat TM影像的不透水面自动提取方法研究 总被引:1,自引:0,他引:1
利用多源遥感数据提取不透水面信息是一个重要的研究方向。针对以往研究中多需要人工选取不透水面样本进行模型训练的问题,本文通过整合夜间灯光遥感与Landsat TM影像中的空间和光谱信息实现了不透水面覆盖范围(Impervious Surface Area,ISA)的自动提取。首先根据夜间灯光的分布来定位ISA聚集的城市区域的位置,分别在城市区域内部和外部自动提取可靠性高的ISA及非ISA样本,然后通过迭代分类提取城市区域的ISA,再以此为样本对城市区域外部进行分类,最后将分类结果整合完成整幅影像的ISA提取流程。应用本方法对美国雪城地区的DMSP/OLS夜间灯光影像上提取了84个城市区域,提取精度大于95%。从中分别选择高ISA密度和低ISA密度的2个城市区域作为ISA提取的测试区,本文方法在城市区域内的ISA提取总体精度与kappa系数分别为88.23%和0.63;在城市区域外部为78.6%和0.54,均优于人工样本选取方法的提取精度,表明该方法能够实现精度稳定且高效的ISA自动提取。 相似文献
43.
阴影辅助下的面向对象城市建筑物提取 总被引:1,自引:0,他引:1
分析高分辨率遥感影像城市建筑物提取的难点,探讨建筑物阴影与建筑物之间的关系,提出一种阴影辅助的建筑物提取方法:首先在高分辨率影像中提取出建筑物阴影对象,通过建筑物与其阴影的空间关系特征分离相互连接的建筑物对象并确认漏提取的建筑物对象,从而提高了建筑物的提取精度;将该方法运用于Quick Bird影像的建筑物提取实验中,取得理想的实验效果. 相似文献
44.
基于GMRF-SVM的高分辨率遥感影像目标区域划分方法 总被引:4,自引:1,他引:4
高分辨率遥感影像数据量大、细节丰富并呈现出一定的尺度依赖性,单一尺度遥感影像分割难以同时兼顾影像的宏观和微观特征,这成为制约遥感信息自动化提取技术发展的瓶颈之一。对此本文提出了基于特征的多尺度高分辨率遥感信息提取技术框架,并分析了其对于大尺度海量数据信息提取与目标识别工作具有的理论及实践意义。根据影像光谱或纹理等特征,提出采用GMRF-SVM方法在大尺度上进行分类的目标区域划分方法。从大尺度信息提取的角度来看,该方法综合了GMRF纹理分类和SVM少量样本模式识别的优势,便于先验知识的融合,无论从花费时间还是分类处理效果上,都远远优于直接采用GMRF进行分割所取得的效果,对于后面的信息提取和目标识别来说更具有实际意义。 相似文献
45.
46.
47.
面向遥感大范围应用的目标,自动化程度仍是遥感影像分类面临的重要问题,样本的人工选择难以适应当前土地覆盖信息自动化提取的实际应用需求。为了构建一套基于先验知识的遥感影像全自动分类流程,本文将空间信息挖掘技术引入到遥感信息提取过程中,提出了一种面向遥感影像对象级分类的样本自动选择方法。该方法通过变化检测将不变地物标示在新的目标影像上,并将过去解译的地物类别知识迁移至新的影像上,建立新的特征与地物关系,从而完成历史专题数据辅助下目标影像的自动化的对象级分类。实验结果表明,在已有历史专题层的图斑知识指导下,该方法能有效地自动选择适用于新影像分类的可靠样本,获得较好的信息提取效果,提高了对象级分类的效率。 相似文献
48.
49.
50.