首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   26篇
  国内免费   30篇
测绘学   1篇
大气科学   68篇
地球物理   20篇
地质学   38篇
海洋学   4篇
综合类   2篇
自然地理   18篇
  2024年   1篇
  2023年   2篇
  2022年   14篇
  2021年   3篇
  2020年   11篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   7篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   13篇
  2003年   12篇
  2002年   2篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有151条查询结果,搜索用时 578 毫秒
91.
入海径流是水循环的重要环节,探究气候变化背景下全球入海径流量的时空变化特征,可为水资源合理利用提供依据。基于全球376条外流河逐月流量、ERA5-LAND再分析资料和10个全球气候模式,构建基于SSA-BP神经网络的降水径流关系模型,分析全球入海径流量在历史时期(1961—2020年)和未来(2021—2100年)3种情景(SSP1-2.6、SSP3-7.0和SSP5-8.5)下的时空变化特征。研究发现:(1)全球尺度上,1961—2020年,多年平均入海年径流量为37423 km3。2021—2100年,全球入海年径流量在未来3种情景下均呈增加趋势,SSP1-2.6情景下趋势显著。与基准期相比,21世纪末期增幅最大。(2)洲际尺度上,历史时期,非洲入海径流量呈显著减少趋势,北美洲呈显著增加趋势。2021—2100年,亚洲、北美洲在3种情景下呈增加趋势,大洋洲呈减少趋势,其余各大洲情景间差异明显。(3)纬向分布上,历史时期,南北半球低纬度变化趋势不显著;北半球中纬度呈弱减少趋势,南半球中纬度呈显著减少趋势;北半球高纬度呈显著增加趋势。2021—2100年,从低到高...  相似文献   
92.
王加虎  郝振纯  姜彤  施雅风  曾涛 《湖泊科学》2003,15(Z1):277-288
本文以联合国粮农组织推荐的改进彭曼-蒙特斯公式为基础,通过日气温计算年蒸发总量并验证,用典型年预测全流域年平均气温增加时,参照蒸散发的变化情况。研究表明:长江流域的年蒸发量将随年平均气温的上升而增加;上游增幅大于中下游,各月增幅相近;气温增幅的年内分布不容忽视,考虑到年内气温不等量增长后的计算结果相对更为合理。研究结果表明:当流域年平均气温升高1℃时,流域上、中下游参照蒸散发分别将增加5%和4%.研究中未考虑气温日较差的变化.  相似文献   
93.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:21,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   
94.
长江中游马口-田家镇河段40年来河道演变   总被引:2,自引:1,他引:1  
Quantitative analysis was performed on the filling-scouring process for the river reach within Makou and Tianjiazhen, the middle Yangtze River with the help of GIS and DEM techniques. The research results indicate that the river reach between Makou and Tianjiazhen was dominated by the scouring process, and the magnitude of scouring is increasing over time. The intensity of scouring process is more in the deep and narrower river reach than shallower and wider ones. The river reach in the Makou and Tianjiazhen river knot is in fre-quent scouring and filling process, however the river reach upper to the Makou and lower to the Tianjiazhen river knot is in moderate scouring and filling process. The river reach just upstream or downstream to the river knot (e.g. Makou and Tianjiazhen river knot in this research) is dominated by filling process and the river reach in the river knot is dominated by the scouring process. Research results indicate no changes in the boundary of the river but the scouring and the filling magnitude in specific river channel is strong. The filling and the scouring process of the study river reach is greatly impacted by the sediments and water from the upstream of the study river reach. The construction of the Three Gorges Dam just upstream to Yichang will cause further decrease of the release of the sediment load to the middle and the lower Yangtze River basin, which will further intensify the scouring process of the river channel in the study river reach.  相似文献   
95.
刘波  姜彤  翟建青  张文红 《气象》2010,36(3):112-116
水量平衡和蒸散发过程研究是水文循环研究的重要方面。正确的观测和计算地表实际蒸散发量对认识气候变化条件下的水循环特征、实现区域水资源的可持续开发利用具有非常重要的意义。传统蒸渗仪功能单一,不仅安装费用较高,日常维护和观测需要大量的人力物力,观测精度也常常受到仪器系统误差或人为因素的影响。围绕着陆面蒸散发观测和解决"蒸发悖论"的科学问题,设计了用于研究气候变化对水循环、陆面蒸散发影响的野外自动观测实验的新系统,站址选择在江西省南昌县生态实验站。该新型蒸渗仪(Lysimeter)系统采用先进的高分辨率称重系统(陆面蒸散发观测精度:0.01 mm)、高精度土壤水分水势传感器(pf:0-7,国际专利号:102004010518.9)和动态IP解析技术的GPRS数据采集器(24 bit,512 k),通过地表气象站、土壤水分水势、蒸渗仪和地下水位等独立的观测实验对比,确定陆地表面实际蒸散发量以及蒸散发过程的有关参数。该系统无论在测量的精度及频次上都比传统观测方法有极大的提高。另外,除了应用于陆面实际蒸散发量的观测外,该系统装置了2004年获得国际专利的新型土壤水分、温度和水势传感器,观测精度较高,观测频次可调节幅度较大,且适应多种环境条件,能够根据不同的科学目标进行新的组合和设计。  相似文献   
96.
根据IPCC共享社会经济路径(SSPs)全球框架,基于中国国内生产总值历史资料、人口普查数据及历年各省统计年鉴,对柯布-道格拉斯(Cobb-Douglas)经济预估模型的劳动参与率、资本产出弹性、全要素生产率等参数进行本地化,预估分析2020—2050年中国(除港、澳、台外)31个省(区、市)第一、第二和第三产业产值变化。结果表明:(1)不同SSPs路径下,中国各省分产业产值的变化趋势有显著差异。第一、第二产业产值变化趋势相同,但第二产业产值远高于第一产业。第一、第二产业在SSP1、SSP2和SSP5路径下持续增加,在SSP3和SSP4路径下呈现先增后减的趋势。第三产业产值在5种路径下均呈持续上升趋势。(2)三产产值增速总体呈下降趋势,产业间增速及物质需求的变化导致第一、第二产业对国内生产总值的贡献逐渐减少,第三产业比重增加,产业结构逐渐优化。(3)不同的社会经济发展政策对中国分省分产业产值影响显著。2020—2050年,三产产值基本呈现东高西低的空间特点。与2010年相比,2050年三产产值均在东部经济区增加最多,第一、第二产业产值在东北经济区增加最少,而第三产业在西部经济区最少。2050年,中国各省第一产业产值对经济贡献普遍低于8%,第二产业在25%~30%,第三产业普遍高于60%。东部经济区第三产业产值对经济总量的贡献始终高于西部,产业结构更为合理。  相似文献   
97.
98.
王艳姣  高蓓  周兵  姜彤  龚志强  司东 《气象》2014,40(6):759-768
2013年,全球气温持续偏高,与2007年并列为第六个最暖年份,其中气温异常偏高的地区主要位于澳大利亚、北美洲北部、南美洲东北部、非洲北部以及欧亚大陆的大部地区。年内,赤道中东太平洋基本维持弱冷水状态,北极海冰范围仍处于记录中最低水平之一,而南极海冰范围则创历史新高。受大气环流异常以及海洋和海冰等外强迫因子的共同影响,世界范围内出现了显著的气候异常和极端事件,年初寒流和暴风雪袭卷亚洲、欧洲部分地区和北美洲,澳大利亚出现了极端高温天气;6—9月中欧、亚洲和北美洲部分地区遭受暴雨洪涝的袭击,期间北半球大部地区则发生了极端高温天气;6月以来多个强台风袭击东亚、东南亚和北美洲东海岸。分析指出,大气环流异常是上述全球重大天气气候事件的直接原因,而太平洋海温异常通过海气相互作用对大气环流异常产生重要影响。此外,在全球升温的过程中,伴随着气温平均值和变幅增大,致使发生极端天气气候事件的概率增加,这为全球许多国家和地区出现异常天气提供了有利的气候背景条件。  相似文献   
99.
太湖地区西苕溪流域水文模型的设计   总被引:4,自引:0,他引:4  
姜彤  曹文清 《地理科学》1997,17(2):150-157
西苕溪流域位于人口众多,经济发达的太湖流域上游源头地区。受自然和气候特性的影响,该流域频繁遭到洪水灾害的袭击。为了定量研究西苕溪流域洪水发生机制和动态规律,本项目研制了一个局地尺度综合水文模型。该模型由若干个子模型组成,包括新安江模型及明渠河网非恒定流的水力学模型等。  相似文献   
100.
基于区域气候模式COSMO-CLM(CCLM)模拟的1960-2100年逐日最低气温数据及2000年中国土地利用数据,采用强度-面积-持续时间(Intensity-Area-Duration,IAD)方法,以全球升温1.5℃(RCP 2.6情景)和2.0℃(RCP 4.5情景)为目标,研究不同持续时间中国极端低温事件变化特征、最强极端低温事件强度与面积关系和最强中心空间分布,分析极端低温事件下耕地面积暴露度的变化规律。研究发现:(1)全球升温1.5℃情景下,持续1至9 d的极端低温事件频次相对于基准期(1986-2005年)下降30%-54%,强度变化-1%-8.8%,影响面积下降7%-21%;升温2.0℃,频次下降48%-80%,强度上升6%-11.5%,影响面积则在-14%-19%变化。(2)全球不同升温情景有可能发生强度和面积超过基准期最强事件的极端低温。全球升温1.5-2.0℃时,同等面积上的最强极端低温事件强度明显下降,但最强极端低温事件中心由西北和西南转移到华中和华南等地。(3)不同升温情景下,暴露于极端低温事件的中国耕地面积明显少于基准期,且升温幅度越高下降程度越大。最强极端低温事件的耕地暴露度则随温度的升高而增大。升温1.5℃时,华东、华北与华中等地暴露在最强极端低温事件的耕地面积相对于基准期有所增大,升温2.0℃时,华东与华北等地有大幅度上升。全球不同升温情景下,极端低温事件频次与影响面积持续下降,但强度上升;随着升温幅度的增大,这种差异变化特征越来越明显;特别应注意的是,随着温度上升,发生强度和面积超过当前记录到的最强极端低温事件的可能性增大;应加强极端事件的预警、预报和监测,减缓经济社会的损失。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号