首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   28篇
  国内免费   30篇
测绘学   1篇
大气科学   71篇
地球物理   21篇
地质学   39篇
海洋学   4篇
综合类   2篇
自然地理   18篇
  2024年   3篇
  2023年   2篇
  2022年   14篇
  2021年   5篇
  2020年   11篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   7篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   13篇
  2003年   12篇
  2002年   2篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
141.
1955-2002年气候因子对鄱阳湖流域径流系数的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
1955-2002年间,鄱阳湖流域径流系数均呈现显著上升趋势,有较明显的突变性和阶段性,突变主要发生在20世纪60年代末和90年代初。径流系数的趋势及突变与该时期降水量的变化吻合较好;气温和蒸发量的变化趋势及突变点也与径流系数基本吻合;季节变化中,7-9月的径流系数与气候因子的变化趋势最为吻合。气候因子的变化与鄱阳湖流域径流系数变化的一致性,说明48 a来气候变化对径流系数的影响非常显著。尽管鄱阳湖流域的径流系数还受到土地利用变化、水土流失和地形等因素叠加效应的影响,但是气候变化仍然是其主要影响因素。  相似文献   
142.
长江流域夏季降水的时空特征及演变趋势分析   总被引:27,自引:6,他引:27  
利用长江流域107个站1958~2002年逐年夏季降水量资料,对长江流域夏季降水的区域特征及演变规律进行诊断分析。结果表明,长江流域夏季降水主要有3种空间振荡型、7个降水变化敏感区域。其中长江三角洲、鄱阳湖平原、湘江-赣江上游区域夏季降水呈显著的增加趋势,增加率分别为25.8mm/10a、69.4mm/10a、31.0mm/10a,信度水平在95%以上;岷江流域则呈显著的减少趋势,减少率为40.7mm/10a,信度水平在99%以上;岷江流域和汉水-长江三峡在1980年代降水最多,而其它区域在1990年代降水最多。夏季降水量江汉-洞庭湖平原在1985年、鄱阳湖平原在1994年、长江三角洲和汉水-长江三峡在1974年发生了由少到多的突变,而岷江流域则在1963年发生由多到少的突变;各个区域都存在明显的年际或年代际振荡周期。  相似文献   
143.
洪湖分蓄洪区洪水淹没风险动态识别与可能损失评估   总被引:1,自引:0,他引:1  
全球气候变化和社会经济快速发展,使长江流域面临越来越严重的防洪压力.在长江流域开展洪水淹没风险识别与洪水损失评估工作,对于长江流域洪水风险管理具有重大意义.本项研究以洪湖分蓄洪区为案例,采用基于GIS栅格数据整合于Arcview3.x的二维水文-水动力学模型进行洪水淹没风险动态识别,并且根据土地利用分类及其单位面积价值,建立洪水淹没损失函数,进行洪水淹没动态损失评估,建立了东洪湖分蓄洪区洪水淹没动态损失数据库,为东洪湖分蓄洪区的合理利用提供定量科学依据.洪水淹没动态风险识别基于数字高程模型进行,采用修正的1998年夏季洪水水位-时间水文过程线对模型参数进行调整,并以地面糙率反映不同地表覆盖形态对洪水演进过程的影响.  相似文献   
144.
The heavy floods in the Taihu Basin Showed increasing trend in recent years.In this work,a typical area in the northern Taihu Basin was selected for flood rish analysis and potential flood losses assessment.human activities have strong impact on the study area‘s flood situation(as affected by the polders built,deforestation,population increase,urbanization,etc.) and have made water level higher,flood duration shorter,and flood peaks sharper.Five years of different flood return periods[(1970),5(1962),10(1987),20(1954),50(1991)] were used to calculate the potential flood risk area and its losses.The potential flood risk map,economic losses,and flood-impacted population were also calculated.The study‘s main conclusions are:1) Human activities have strongly changed the natural flood situation in the study area,increasing runoff and flooding;2) The flood risk area is closely related with the precipitation center;3) Polder construction has successfully protected land from flood.Shortened the flood duration,and elevated water leel in rivers outside the polders;4) Economic and social development have caused flood losses to increase in recent years.  相似文献   
145.
根据1984—2014年中国热带气旋损失数据和社会经济统计资料,采用居民消费者物价指数方法(consumer price index,CPI)、常规标准化方法(conventional normalization method,CNM)和替代标准化方法(Alternative Normalization Method,ANM)对影响中国的气旋的直接经济损失进行标准化处理,对比研究了原始的和CPI、CNM、ANM等三种标准化的灾害损失时空特征。研究结果表明:(1) 原始损失值有利于与同年其他灾种损失进行对比以及数据的逐年延长更新,而标准化后的损失值有利于长时间序列的时空比较研究,其中,CPI方法计算简单,易于推广,可用于中国灾害损失的数据处理与分析汇总,而在人口和财富快速增长的地区,CNM和ANM方法有利于体现人口和财富对损失的影响,在长时间序列的时空比较研究方面更具优势;(2) 1984—2014年,共有243个影响气旋影响中国大陆的22个省(区、市),气旋频数多年来没有显著变化趋势,但未登陆的影响气旋和台风(TY)强度及以上等级的影响气旋频数多年来皆呈明显增加趋势;(3) 1984—2014年影响气旋所造成的直接经济损失在原始的和经CPI标准化后的序列中均呈显著增加趋势,而经CNM和ANM标准化后的序列则无明显趋势,原始序列中最高损失年是2013年,CPI、CNM和ANM标准化后损失序列在1996年达到最高值后经历了由高到低的突变,原始的以及三种标准化后的损失序列均存在2~3年的周期振荡,浙江、广东和福建省始终是直接经济损失最高的三个省份;(4) 在对中国大陆造成最高直接经济损失的十个影响气旋中,1996年的“赫伯”(Herb)始终位居首位,而其他影响气旋的排序位次因标准化与否以及标准化方法的不同而有明显差异。   相似文献   
146.
根据共享社会经济情景(SSPs)分为“双碳”路径(SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4、SSP4-6.0)和“高碳”路径(SSP3-7.0、SSP5-8.5)。在碳达峰(2028—2032年)和碳中和(2058—2062年)两个时期,采用5个气候模式,7个情景驱动SWAT水文模型,分析赣江流域径流演变特征,主要结论如下:1961—2017年赣江流域观测到的年均气温以0.17℃/(10 a)的速率呈显著上升趋势(p<0.01),降水以17 mm/(10 a)的速率呈不显著上升。“双碳”和“高碳”路径下,2021—2100年赣江流域均呈现暖湿态,气温持续变暖,降水有所增加;碳达峰、碳中和时期,“双碳”路径下年径流呈现增加趋势;“双碳”路径下,月径流在汛期呈现增加趋势,枯水期在SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4下呈现增加趋势,在SSP4-6.0下呈现减少趋势。“双碳”路径下极端水文事件强度将可能小于“高碳”路径。  相似文献   
147.
长江流域极端降水时空分布和趋势   总被引:35,自引:3,他引:35       下载免费PDF全文
1986年以来,长江流域的极端强降水出现了显著增加的趋势,突出表现在中下游地区。长江中下游地区极端降水量的增加,既是极端降水强度增强,也是极端降水事件显著增加的结果。长江流域极端降水变化主要发生在东南部和西南部。趋势分析表明,自20世纪80年代中期以来,长江流域上游极端降水事件峰值提前到6月份出现,与长江中下游极端降水峰值出现的时间几乎同步,这必将加大遭遇性洪水发生的机率。20世纪90年代以来长江洪水的频繁发生,与长江流域极端降水时空分布的变化密切相关。  相似文献   
148.
将造成经济损失的热带气旋定义为致灾气旋。基于气象观测站的逐日气压、风速和降水量数据确定致灾气旋阈值,结合区域气候模式COSMO-CLM(CCLM)在1961—2100年的输出资料,预估致灾气旋发生频数及其风速与降水量,分析全球升温1.5 ℃与2.0 ℃情景下,中国东南沿海地区致灾气旋时空变化特征。结果表明:(1) 1986—2015年,东南沿海地区致灾气旋发生频数共计180个,整体呈上升趋势,平均风速和降水量分别为8.7 m/s和129.8 mm,对浙江东部及广东东部沿海影响最严重。(2)全球升温1.5 ℃,2020—2039年致灾气旋频数将由基准期(1986—2005年)的111个上升至138个,增加区域主要位于广东省西南地区及福建省南部地区;平均风速和降水量分别上升15%和17%,至8.4 m/s和109.9 mm,以福建省沿海地区增加最明显。(3)全球升温2.0 ℃,2040—2059年致灾气旋频数较1986—2005年增加33%,将达148个;风速上升32%,以浙江省东部、福建和广东省接壤的沿海地区及广东省南部增幅最大;降水量上升35%,以福建与广东省接壤的沿海地区及广东省西南地区增加明显。(4)相比升温1.5 ℃,全球气温额外升高0.5 ℃,东南沿海地区致灾气旋频数及其风速与降水量将分别上升9%、17%和18%。努力将温升控制在1.5 ℃,对降低致灾气旋频率和强度增加所导致的影响具有重要意义。   相似文献   
149.
应用风险管理的理论和方法,对福建省龙岩市烟叶种植面临的气象灾害风险进行了风险评价和管理.在对当地烟叶种植面临的气象灾害风险识别和分析的基础上,通过对危险性、暴露性、脆弱性3因子的分析,构建了当地烟叶种植面临气象灾害的风险评价指标体系和灾害风险评估模型.利用该风险评估模型对龙岩地区各县(市)进行了风险评估,得出了各县(市)的霜冻和暴雨洪涝灾害的风险指数,并根据制定的风险等级划分标准,进行了风险等级的区划,为龙岩市烟叶种植结构的调整和灾害预防提供了科学的依据.  相似文献   
150.
长江流域1960-2004年极端强降水时空变化趋势   总被引:15,自引:0,他引:15  
Recent trends of the rainfall, intensity and frequency of extreme precipitation (EP) over the Yangtze River Basin are analyzed in this paper. Since the mid-1980s the rainfall of EP in the basin has significantly increased, and the most significant increment occurred in the southeast mid-lower reaches, and southwest parts of the basin. Summer witnessed the most remarkable increase in EP amount. Both the intensity and frequency of EP events have contributed to the rising of EP amount, but increase in frequency contributed more to the increasing trend of EP than that in intensity. The average intervals between adjacent two EP events have been shortened. It is also interesting to note that the monthly distribution of EP events in the upper basin has changed, and the maximum frequency is more likely to occur in June rather than in July. The synchronization of the maximum frequency month between the upper and mid-lower reaches might have also increased the risk of heavy floods in the mid-lower reaches of the Yangtze River.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号