首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   33篇
  国内免费   70篇
测绘学   2篇
大气科学   78篇
地球物理   34篇
地质学   180篇
海洋学   6篇
综合类   2篇
自然地理   43篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   11篇
  2013年   5篇
  2012年   8篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   11篇
  2007年   12篇
  2006年   28篇
  2005年   22篇
  2004年   17篇
  2003年   23篇
  2002年   34篇
  2001年   28篇
  2000年   22篇
  1999年   25篇
  1998年   19篇
  1997年   9篇
  1996年   5篇
  1995年   11篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有345条查询结果,搜索用时 31 毫秒
1.
小波气候突变的检测--应用范围及应注意的问题   总被引:12,自引:0,他引:12  
气候突变及其检测是气候变化研究的一个重要方面。气候突变的表现多种多样,目前也有许多检测气候突变的方法,但这些方法能否准确地检测出气候突变现象,他们的适用范围如何,是一个值得注意的问题。研究表明,尽管小波分析方法在检测序列突变方面具有严格的数学意义,但因为其检测到的是序列的均值突变,因此,在应用于气候突变的检测方面应该特别注意,数学上的严格并不等同于气候意义上的严格。因为某些情况下有些突变点并没有一定的气候意义。  相似文献   
2.
长江三角洲地区水和热通量的时空变化特征及影响因子   总被引:9,自引:2,他引:9  
文中利用改进的K B模式和牛顿扩散方法及 196 1年以来的长江三角洲 (2 8~ 33°N ,118~ 12 3°E)地区的 4 8个测站的常规气象资料 ,估计了该地区近 4 0a来的蒸散量和感热通量。结合该地区的气温、太阳辐射等气候资料和 196 0年以来该区域土地资源利用变化等有关信息对该地区的潜热通量和感热通量的时 空间变化特征及其可能成因进行了综合分析。结果认为该地区自 2 0世纪 70年代开始平均蒸散量有逐渐减小的趋势 ,与 1980年相比 ,1998年区域年平均蒸散量减小了 2 4mm。区域平均感热通量与蒸散量相比在此期间变化并不明显。通过对该地区的云量、太阳辐射及土地利用变化资料分析认为 ,造成该地区平均蒸散量减少趋势的的原因之一是用于蒸发的能量即太阳辐射的减少 ,而造成太阳辐射减少的可能原因为云量及大气透明度的变化所至 ;原因之二是该地区地表覆盖条件的改变。近 2 0a来 ,该地区的水田、旱地及水域面积占总面积的比率分别减少 1.35 3% ,4 .4 4 2 %和2 .5 97% ,而城镇建设、工矿及其它建设用地面积则增加 3.345 %。耕地及水面的减小和城镇及建设用地面积的增加从整体上使区域平均蒸发量减少。  相似文献   
3.
自工业革命以来全球大气CH4含量呈快速的增长趋势, 但达索普冰芯记录所显示的北半球中低纬度地区大气CH4增长的启动时间要晚于极地冰芯记录近100 a. 由于受北半球人类活动CH4排放、CH4在大气中的寿命及大气中CH4的传输等过程的影响, 最近150 a以来, 中低纬度大气CH4与南极大气CH4含量在不同的时段表现出不同的净积累量和增长速率, 且20世纪两次世界大战期间达索普冰芯记录明确显示出人类活动排放的减缓使大气CH4呈负增长. 对比研究认为, 到20世纪中叶人类活动的甲烷排放已达到极高值, 中低纬度大气中CH4增长率及年积累逐步趋于平稳且略有降低. 可以认定, 工业革命以来中低纬度地区大气CH4与南极大气CH4含量的变化在不同的时段在受控于人类活动影响的同时, CH4在大气中的行为和传输过程以及东亚中低纬度季风气候的影响决定了两地之间大气CH4含量变化存在显著的差异.  相似文献   
4.
王有清  姚檀栋 《冰川冻土》2002,24(5):550-558
冰芯记录中的气候变化是古气候研究中的重要组成部分. 极地、中低纬度和热带地区的冰芯记录表明, 在冰期间冰期旋回大尺度气候变化背景下, 全球经历了一系列数百年至千年时间尺度的快速气候突变事件, 诸如末次间冰期的干冷事件、末次冰期的DansgaardOeschger事件、 Heinrich事件和Younger Dryas事件等, 虽然这些穿插在冰阶中的暖湿气候事件、间冰阶中的干冷气候事件的成因、机制和影响范围还存在明显的不确定性. 主要介绍不同区域冰芯记录中末次间冰期冰期旋回这些气候突变事件发生的时间、过程和机制等的研究进展.  相似文献   
5.
青藏高原各拉丹冬地区冰川变化的遥感监测   总被引:49,自引:20,他引:49  
以位于青藏高原长江源头的各拉丹冬地区冰川为例, 利用2000年的TM数字遥感影像资料、 1969年的航空相片遥感资料、地形图及数字地形模型, 通过遥感图像处理和分析提取研究区小冰期最盛期(LIA)、 1969年和2000年的冰川范围, 并在地理信息系统技术支持下分析该地区冰川的进退情况. 研究结果表明, 该地区1969年冰川面积比小冰期最盛期的冰川面积减少了5.2%, 2000年的冰川面积比1969年的冰川面积减少了1.7%. 从1969年到2000年最大冰川退缩速度为-41.5 m*a-1, 最大冰川前进速度为+21.9 m*a-1. 本区的冰川基本处于稳定状态, 冰川退缩的速度不是太大, 并有前进的冰川存在.  相似文献   
6.
2001年8月19~23日, 在格陵兰举行了规模空前的"冰芯与气候"国际盛会, 会议展示了冰芯与气候环境研究的最新进展. 文中介绍这次会议并概括了近年来的主要研究进展. 与南北极地区的冰芯研究相比, 中低纬度地区冰芯研究是近年来国际冰芯研究中发展最快的. 在这一研究中, 中国科学家做出了重要贡献并得到了国际同行的高度评价.  相似文献   
7.
青藏高原土壤水热分布特征及冻融过程在季节转换中的作用   总被引:21,自引:0,他引:21  
利用GAME-Tibet期间所取得的高分辩率土壤温度和含水量资料,对青藏高原(主要是藏北高原)土壤水热分布特征及冻融过程在季节转换中的作用进行了分析。指出藏北高原4cm学深处土壤在10月份开始冻结,次年4-5月份开始消融,冻结持续时间长达5-7个月。冻结过程有利于土壤维持其水分,因此,在刚刚开始消融时土壤含水量仍然很高。从而为夏季风爆发前土壤通过蒸发向大气提供水分打下了基础。指出土壤冻融过程可能在高原季节转换中起着重要作用。  相似文献   
8.
慕士塔格冰芯钻孔温度测量结果   总被引:1,自引:2,他引:1  
2002年8月对慕士塔格冰川累积区海拔6300m左右的两根冰芯钻孔(其中—根达到冰川底部基岩)进行了温度测量,揭示了该处冰川的温度分布特征.结果表明:慕士塔格冰芯的冰温是目前中低纬地区山地冰川中最低的,达-21.79℃,该最低温度出现的位置在35m以下;冰床底部的温度为-20.76℃,也远低于其它山地冰川的冰床温度,极低的温度对成冰过程有重要影响,并有利于获得可靠的冰芯记录。  相似文献   
9.
慕士塔格峰洋布拉克冰川消融的观测分析   总被引:6,自引:11,他引:6  
2001年7月4日至8月8日,在慕士塔格峰西侧的洋布拉克冰川海拔4600~4460m区间的冰舌段,进行了短期的冰面消融观测.慕士塔格峰冰川区暖期短,冰面强消融时期比较集中.观测期间,冰面纯消融厚度为640~1260mm水层,日平均消融厚度达26~39.6mm,推算冰舌区年消融量不低于1700~2000mm,比青藏高原内部的冰川消融强烈的多.7月21-22日出现最大消融值,在海拔4460m和4600m,日消融量分别为144.5mm和59.5mm.冰面消融随海拔上升而减小,日平均消融梯度:在裸露冰区为0.40~0.55mm·10m-1;在表碛覆盖区为0.21~3.53mm·10m-1,变幅较裸露冰区大.按裸露冰区的消融梯度计算出海拔4800m处的日平均消融量,和过去的研究资料比较,2001年冰面日平均消融量较1987年和1960年的消融量大,反映出慕士塔格峰区影响冰川消融的气候与全球气候变暖的特点是一致的.  相似文献   
10.
地表非均匀性对区域平均水分通量参数化的影响   总被引:3,自引:3,他引:3  
次网格尺度地表非均匀性对于网格区平均通量具有重要影响。若将网格区视为均一地表 ,并不能真实描述地 气通量交换过程 ,且可造成很大误差。文中从理论上证明 ,区域平均水分通量的变化率可分解为两部分 :第一部分为区域水分通量的算术平均变化率 ;第二部分为非均匀性所引起的水分通量变化率扰动 ,它与区域内土壤水分空间分布的变差系数有关。数值试验表明 ,地表土壤水分的水平空间变差系数集中反映了区域内土壤水分分布的非均匀程度 ,不同土壤对同样的非均匀程度其敏感性是不同的。变差系数愈大 ,非均匀性愈强 ,在相同的土壤水分平均值下 ,不同土壤类型对地表非均匀程度的敏感性并不相同。例如沙土和粘土受非均匀性的影响就可相差数十倍。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号