首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
地球物理   21篇
地质学   16篇
海洋学   6篇
天文学   4篇
自然地理   20篇
  2016年   5篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
51.
The island Surtsey was created by a submarine volcanic eruption which started on the 14th of November 1963, 21 km southwest of the Westman Islands. Volcanic activity continued in this area for nearly 4 years. During the summer of 1979 a 181 m deep continuously cored borehole was drilled on the Surtsey island. Several temperature profiles have been measured in the hole since 1979. The results of these temperature measurements are used as the basis for a discussion of the thermal condition of Surtsey. The hypothesis that intrusions rather than pillow lavas are responsible for the excess heat content of Surtsey is favored. It is found that the 13 m thick discontinuous dike complex, observed in the drill core, is sufficient to explain the excess heat content in the vicinity of the borehole and the shape of the temperature profiles recorded. It is demonstrated that the heat transfer in Surtsey has been dominated by hydrothermal convection and that the system is vapor dominated above sea level. It is estimated that the permeability of a 40 m thick section of altered tuff below sea level is 4.1 × 10−13 m2, while the permeability of the unaltered tuff above sea level is estimated as 1.2 × 10−10 m2.  相似文献   
52.
—Measurements indicate that stress magnitudes in the crust are normally limited by the frictional equilibrium on pre-existing, optimally oriented faults. Fault zones where these limitations are frequently reached are referred to as seismic zones. Fault zones in the crust concentrate stresses because their material properties are different from those of the host rock. Most fault zones are spatially relatively stable structures, however the associated seismicity in these zones is quite variable in space and time. Here we propose that this variability is attributable to stress-concentration zones that migrate and expand through the fault zone. We suggest that following a large earthquake and the associated stress relaxation, shear stresses of a magnitude sufficient to produce earthquakes occur only in those small parts of the seismic zone that, because of material properties and boundary conditions, encourage concentration of shear stress. During the earthquake cycle, the conditions for seismogenic fault slip migrate from these stress-concentration regions throughout the entire seismic zone. Thus, while the stress-concentration regions continue to produce small slips and small earthquakes throughout the seismic cycle, the conditions for slip and earthquakes are gradually reached in larger parts of, and eventually the whole, seismogenic layer of the seismic zone. Prior to the propagation of an earthquake fracture that gives rise to a large earthquake, the stress conditions in the zone along the whole potential rupture plane must be essentially similar. This follows because if they were not, then, on entering crustal parts where the state of stress was unfavourable to this type of faulting, the fault propagation would be arrested. The proposed necessary homogenisation of the stress field in a seismic zone as a precursor to large earthquakes implies that by monitoring the state of stress in a seismic zone, its large earthquakes may possibly be forecasted. We test the model on data from Iceland and demonstrate that it broadly explains the historical, as well as the current, patterns of seismogenic faulting in the South Iceland Seismic Zone.  相似文献   
53.
Mechanically, many volcanoes may be regarded as elastic inclusions, either softer (with a lower Young's modulus) or stiffer (with a higher Young's modulus) than the host-rock matrix. For example, many central volcanoes (stratovolcanoes, composite volcanoes) are composed of rocks that are softer than the crustal segments that host them. This is particularly clear in Iceland where central volcanoes are mostly made of soft rocks such as rhyolite, pyroclastics, hyaloclastites, and sediments whereas the host rock is primarily stiff basaltic lava flows. Most active central volcanoes also contain fluid magma chambers, and many have collapse calderas. Fluid magma chambers are best modelled as cavities (in three dimensions) or holes (in two dimensions), entire calderas as holes, and the ring faults themselves, which commonly include soft materials such as breccias, as soft inclusions. Many hyaloclastite (basaltic breccias) mountains partly buried in the basaltic lava pile also function as soft inclusions. Modelling volcanoes as soft inclusions or holes, we present three main numerical results. The first, using the hole model, shows the mechanical interaction between all the active central volcanoes in Iceland and, in particular, those forming the two main clusters at the north and south end of the East Volcanic Zone (EVZ). The strong indication of mechanical interaction through shared dykes and faults in the northern cluster of the EVZ is supported by observations. The second model, using a soft inclusion, shows that the Torfajökull central volcano, which contains the largest active caldera in Iceland, suppresses the spreading-generated tensile stress in its surroundings. We propose that this partly explains why the proper rift zone northeast of Torfajökull has not managed to propagate through the volcano. Apparently, Torfajökull tends to slow down the rate of southwest propagation of the rift-zone part of the EVZ. The third model, again using a soft inclusion, indicates how the lateral propagation of a segment of the 1783 Laki fissure became arrested in the slopes of the hyaloclastite mountain Laki.  相似文献   
54.
The Grímsv?tn eruption in November 2004 belongs to a class of small- to medium-sized phreatomagmatic eruptions which are common in Iceland. The eruption lasted 6?days, but the main phase, producing most of the 0.02?km3 of magma erupted, was visible for 33?h on the C-band weather radar of the Icelandic Meteorological Office located in Keflavík, 260?km to the west of the volcano. The plume rose to 8–12?km high over sea level during 33?h. The long distance between radar and source severely reduces the accuracy of the plume height determinations, causing 3.5-km steps in recorded heights. Moreover, an apparent height overestimate of ~1.5?km in the uncorrected radar records occurs, possibly caused by wave ducting or super-refraction in the atmosphere. The stepping and the height overestimate can be partly overcome by averaging the plume heights and by applying a height adjustment based on direct aircraft measurements. Adjusted weather radar data on plume height are used to estimate the total mass erupted using empirical plume models mostly based on magmatic eruptions and to compare it with detailed in situ measurements of the mass of erupted tephra. The errors arising because of the large radar plume distance limit the applicability of the data for detailed comparisons. However, the results indicate that the models overestimate the mass erupted by a factor of three to four. This supports theoretical models indicating that high steam content of phreatomagmatic (wet) plumes enhances their height compared to dry plumes.  相似文献   
55.
56.
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.  相似文献   
57.
The permeability of a reservoir is particularly dependent upon the proportion of its fractures that penetrate or are arrested at interfaces such as contacts and discontinuities. Here we report on fracture penetration and fracture arrest in Lower Cretaceous peritidal deposits exposed in the Pizzicoli Quarry, Gargano Promontory, southern Italy. We measured more than 2000 fractures, in the field and using LIDAR data, of which 564 fractures from the field and 518 from LIDAR studies are the focus of this paper. Fracture arrest/deflection and penetration depend much on the effects of peritidal cycle interfaces such as paleosol horizons, laminated carbonate mudstones, and stylonodular horizons. The laminated mudstones have the greatest effect; 63–99% of the fractures are deflected or arrested at such interfaces, whereas 63–90% are deflected/arrested at paleosols, and 20–35% at stylonodular horizons. In the mudstones, many fractures are arrested at thin, internal laminae, such that few penetrate the entire laminated layer, and fewer still the boundaries between the layers. Paleosol interfaces deflect/arrest more than 60% of all fractures. However, when small-offset fractures above and below paleosols are regarded as penetrating, they are evenly spaced (non-clustered), so that fracture-related fluid transport may occur across the entire paleosol. Stylonodular horizons deflect/arrest and split some fractures, but generally have little effect compared with the other types of interfaces. We present three main mechanisms for fracture deflection and/or arrest: (1) the fracture-induced tensile stress ahead of its tip, referred to as the Cook-Gordon debonding mechanism; (2) rotation of the principal stresses at and across the interface, resulting in the formation of stress barriers; and (3) large elastic mismatch (particularly as regards Young’s moduli) between layers across an interface. All these mechanisms are likely to have operated during fracture propagation and arrest in the carbonate rocks of the Pizzicoli Quarry.  相似文献   
58.
The South Iceland Seismic Zone (SISZ) was loaded to failure in June 2000, resulting in two M6.6 earthquakes. The SISZ is an E–W‐trending zone with an overall sinistral movement. Numerical models indicate that, when the SISZ is loaded to failure, there are stress concentrations at its ends: tensile in the north‐east and south‐west quadrants, and compressive in the north‐west and south‐east quadrants. These model predictions fit well with observations. Geodetic measurements indicate considerable compression, uplift and associated intense seismicity in recent years in the volcanoes of Hengill and Eyjafjallajokull, located in the quadrants of compression, whereas there have been unusually frequent eruptions in the past decades in the Hekla Volcano, located in one of the quadrants of extension. The models predict that following the large June 2000 earthquakes, stress relaxation within the SISZ should lead to stopping of the intense seismicity and deformation in the volcanoes of Hengill and Eyjafjallajokull, again in agreement with observations. However, when similar episodes of deformation and seismicity start again, particularly in the Hengill Volcano, a large earthquake would be expected within several years in the SISZ. The numerical models, and the deformation and seismic data, indicate that monitoring of ‘soft’ inclusions such as volcanoes (many with magma chambers) in the vicinity of a seismic zone may serve as precursors to large earthquakes.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号