全文获取类型
收费全文 | 71篇 |
免费 | 1篇 |
专业分类
大气科学 | 1篇 |
地球物理 | 21篇 |
地质学 | 16篇 |
海洋学 | 6篇 |
天文学 | 8篇 |
自然地理 | 20篇 |
出版年
2016年 | 5篇 |
2014年 | 2篇 |
2013年 | 2篇 |
2012年 | 2篇 |
2010年 | 1篇 |
2009年 | 1篇 |
2008年 | 6篇 |
2007年 | 3篇 |
2006年 | 1篇 |
2005年 | 5篇 |
2004年 | 8篇 |
2003年 | 2篇 |
2002年 | 4篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1967年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有72条查询结果,搜索用时 15 毫秒
21.
The Tjörnes facture zone (TFZ) connects the EW extension of the Mid-Atlantic ridge north of Iceland to the extension of the North volcanic zone (NVZ) of Iceland. Earthquakes up to magnitude 7 (Ms) can occur in TFZ, volcanic eruptions have been observed and large crustal deformations are expected in similar way as have been observed in the NVZ. Most of the zone is below ocean, which limits the historical information and geological observations. For studying the dynamics of the zone we must rely on interpretation and modelling based on seismic observations, especially on microearthquake observations for the last 10 years. In this paper we demonstrate how microearthquakes can be applied to map the details of the plate boundary, and how this information can be applied to find epicenters and fault planes of large historical earthquakes, also how seismic information can be applied in dynamic modelling and to infer spatial and temporal interplay in activity, and to enhance hazard assessment. 相似文献
22.
Etienne Favey Alain Geiger G. Hilmar Gudmundsson & Aloysius Wehr 《Geografiska Annaler: Series A, Physical Geography》1999,81(4):555-561
Airborne laser scanning (ALS) is well suited for the production of digital elevation models (DEM), and can, in contrast to photographic methods, be used to acquire a DEM independently of surface texture and external light sources. ALS thus serves as a tool to generate DEMs of firn areas where photogram- metric methods often fail.
The potential of an integrated ALS system – comprising a laser scanner, precise differential global positioning system, and a gyro platform – for DEM generation of firn areas is currently being assessed. The Unteraargletscher, Bernese Alps, Switzerland, has been chosen as a test site. As part of a pilot project aimed at determining the mass balance distribution of that glacier without the use of in situ information, ALS measurements were conducted in autumn 1997. The DEM derived from laser measurements is extremely sensitive to the position and attitude of the aircraft. Currently the main work focuses on assessing and improving the system's accuracy by error modelling and by the development of error-correction algorithms.
Preliminary results from Unteraargletscher are presented, and the potential of this method for the generation of DEMs of firn areas is discussed. 相似文献
The potential of an integrated ALS system – comprising a laser scanner, precise differential global positioning system, and a gyro platform – for DEM generation of firn areas is currently being assessed. The Unteraargletscher, Bernese Alps, Switzerland, has been chosen as a test site. As part of a pilot project aimed at determining the mass balance distribution of that glacier without the use of in situ information, ALS measurements were conducted in autumn 1997. The DEM derived from laser measurements is extremely sensitive to the position and attitude of the aircraft. Currently the main work focuses on assessing and improving the system's accuracy by error modelling and by the development of error-correction algorithms.
Preliminary results from Unteraargletscher are presented, and the potential of this method for the generation of DEMs of firn areas is discussed. 相似文献
23.
T. C. Jude-Eton T. Thordarson M. T. Gudmundsson B. Oddsson 《Bulletin of Volcanology》2012,74(5):1057-1082
The basaltic, phreatomagmatic eruption of Grímsv?tn volcano, Iceland, in November 2004 (G2004) lasted for 5?days, during which time two separate vents were active. Significant deposition of tephra occurred in the first 45?h only. We have subdivided the deposit into seven units (A–G) on the basis of differences in texture, grain size and componentry, and the presence of sharp contacts between the layers. The distribution of tephra lobes was used to infer the vent of origin for each unit. The G2004 deposit is poorly sorted overall and consists of non-vesicular to highly vesicular juvenile components. Units A and B comprise almost exclusively non- to poorly vesicular glass fragments, whereas units C–G contain at least 30?vol.% highly vesicular pumice. The proportion of non-juvenile fragments increases significantly in the final unit (unit F) of the main phase; non-juvenile fragments are restricted to the coarse (>0 Φ) fraction of the deposit. Main phase units C and E account for 80% of the total deposit volume, including the entire distal portion, and are interpreted to represent a mixture of (1) a widely dispersed component that fell from the upper margins of a strongly inclined (~45°), 6–10?km high plume and (2) a locally dispersed (<3?km from source) component originating from pyroclastic density currents and minor tephra jets. 相似文献
24.
Experimental tests of garnet peridotite oxygen barometry 总被引:1,自引:0,他引:1
We have performed experiments aimed at testing the calibration of oxygen barometers for the garnet peridotite [garnet (Gt)-olivine (Ol)-orthopyroxene (Opx)] phase assemblage. These involved equilibrating a thin layer of garnet sandwiched between layers of olivine and orthopyroxene at 1300°C and 23–35 kbar for 1–7 days. Oxygen fugacity was controlled (but not buffered) by using inner capsules of Fe?Pt alloy or graphitc or molybdenum sealed in welded Pt outer capsules. Post-experiment measurement of fO2 was made by determining the compositions of Pt-Fe alloy sensors at the interface between garnet and olivine + orthopyroxene layers. The composition of alloy in equilibrium with olivine + orthopyroxene was approached from Fe-oversaturated and Fe-undersaturated conditions in the same experiment with, in general, excellent convergence. Product phase compositions were determined by electron microprobe and a piece of the garnet layer saved for 57Fe Mössbauer spectroscopy. The latter gave the Fe3+ content of the garnet at the measured P-T-fO2 conditions. Approach to equilibrium was checked by observed shifts in Fe3+ content and by the approach of garnet-olivine Fe?Mg partitioning to the expected value. The compositions of the phases were combined with mixing properties and thermodynamic data to calculate an apparent fO2 from two possible garnet oxybarometers:- (1) $\begin{gathered} 2Ca_3 Fe_2 Si_3 O_{12} + 2Mg_3 Al_2 Si_3 O_{12} + 4FeSiO_3 = 2Ca_3 Al_2 Si_3 O_{12} \hfill \\ Gt Gt Opx Gt \hfill \\ + 8FeSi_{0.5} O_2 + 6MgSiO_3 + O \hfill \\ Ol Opx \hfill \\ \end{gathered} $ and (2) $\begin{gathered} 2Fe_3 Fe_2 Si_3 O_{12} = 8FeSi_{0.5} O_2 + 2FeSi_3 O_2 \hfill \\ Gt Ol Opx \hfill \\ \end{gathered} $ Comparison of calculated fO2s with those measured by the Pt-Fe sensors demonstrated that either barometer gives the correct answer within the expected uncertainty. Data from the first (Luth et al. 1990) has an uncertainty of about 1.6 logfO2 units, however, while that from equilibrium (2) (Woodland and O'Neill 1993) has an error of +/- 0.6 log units, comparable to that of the spinel peridotite oxybarometer. We therefore conclude that equilibrium (2) may be used to calculate the fO2 recorded by garnet peridotites with an uncertainty of about +/- 0.6 log units, providing the potential to probe the oxidation environment of the deep continental lithosphere. Preliminary application based on data from Luth et al. (1990) indicates that garnet peridotite xenoliths from Southern Africa record oxygen fugacities about 3.0 log units below the FMQ (fayalite-magnetite-quartz) buffer. These are substantially more reducing conditions than those recorded by continental spinel lherzolites which typically give oxygen fugacities close to FMQ (Wood et al. 1990). 相似文献
25.
Bulletin of Volcanology - The stratigraphy and geochemistry of the uppermost 200–300&;nbsp;m of the metabasalt sequence of the Solund-Stavfjord Ophiolite Complex of western Norway has been... 相似文献
26.
27.
28.
Rayleigh wave tomography in the North Atlantic: high resolution images of the Iceland, Azores and Eifel mantle plumes 总被引:1,自引:0,他引:1
Presented in this paper is a high resolution Sv-wave velocity and azimuthal anisotropy model for the upper mantle beneath the North Atlantic and surrounding region derived from the analysis of about 9000 fundamental and higher-mode Rayleigh waveforms. Much of the dataset comes from global and national digital seismic networks, but to improve the path coverage a number of instruments at coastal sites in northwest Europe, Iceland and eastern Greenland was deployed by us and a number of collaborators. The dense path coverage, the wide azimuthal distribution and the substantial higher-mode content of the dataset, as well as the relatively short path-lengths in the dataset have enabled us to build an upper mantle model with a horizontal resolution of a few hundred kilometers extending to 400 km depth. Low upper mantle velocities exist beneath three major hotspots: Iceland, the Azores and Eifel. The best depth resolution in the model occurs in NW Europe and in this area low Sv-velocities in the vicinity of the Eifel hotspot extend to about 400 km depth. Major negative velocity anomalies exist in the North Atlantic upper mantle beneath both Iceland and the Azores hotspots. Both anomalies are, above 200 km depth, 4–7% slow with respect to PREM and elongated along the mid-Atlantic Ridge. Low velocities extend to the south of Iceland beneath the Reykjanes Ridge where other geophysical and geochemical observations indicate the presence of hot plume material. The low velocities also extend beneath the Kolbeinsey Ridge north of Iceland, where there is also supporting geochemical evidence for the presence of hot plume material. The low-velocity upper mantle beneath the Kolbeinsey Ridge may also be associated with a plume beneath Jan Mayen. The anomaly associated with the Azores extends from about 25°N to 45°N along the ridge axis, which is in agreement with the area influenced by the Azores Plume, predicted from geophysical and geochemical observations. Compared to the anomaly associated with Iceland, the Azores anomaly is elongated further along the ridge, is shallower and decays more rapidly with depth. The fast propagation direction of horizontally propagating Sv-waves in the Atlantic south of Iceland correlates well with the east–west ridge-spreading direction at all depths and changes to a direction close to NS in the vicinity of Iceland. 相似文献
29.
Agust Gudmundsson 《Bulletin of Volcanology》1998,60(3):160-170
The ring fractures that form most collapse calderas are steeply inward-dipping shear fractures, i.e., normal faults. At the
surface of the volcano within which the caldera fault forms, the tensile and shear stresses that generate the normal-fault
caldera must peak at a certain radial distance from the surface point above the center of the source magma chamber of the
volcano. Numerical results indicate that normal-fault calderas may initiate as a result of doming of an area containing a
shallow sill-like magma chamber, provided that the area of doming is much larger than the cross-sectional area of the chamber
and that the internal excess pressure in the chamber is smaller than that responsible for doming. This model is supported
by the observation that many caldera collapses are preceded by a long period of doming over an area much larger than that
of the subsequently formed caldera. When the caldera fault does not slip, eruptions from calderas are normally small. Nearly
all large explosive eruptions, however, are associated with slip on caldera faults. During dip slip on, and doming of, a normal-fault
caldera, the vertical stress on part of the underlying chamber suddenly decreases. This may lead to explosive bubble growth
in this part of the magma chamber, provided its magma is gas rich. This bubble growth can generate an excess fluid pressure
that is sufficiently high to drive a large fraction of the magma out of the chamber during an explosive eruption.
Received: 2 January 1997 / Accepted: 22 April 1998 相似文献
30.
G. Gudmundsson 《Geophysical Journal International》1967,13(1-3):325-337