A geochemical baseline provides the means to distinguish between the pedogenic origin and the anthropogenic origin of the
trace element in the environmental compartments. We collected 271 soil samples representative of different parent rocks and
soil types from the whole territory of Hong Kong and analyzed the composition of clay mineralogy and the contents of 15 chemical
elements (Fe, Cd, As, etc.) for these samples. The baseline was predicted with the method of the normalization procedure combined
with the relative cumulative frequency curve. The result indicated that Fe was the best reference element for the normalization
procedure among the five potential reference elements (Fe, Al, Sc, Ti, and Mn), followed by Sc and Ti. A poor correlation
was found between Sc, Ti, and Cu. The predicted baseline was much lower than the A-value of the Dutch List used usually in screening the polluted soil of Hong Kong, implying that the extent of heavy metal
pollution might have been underestimated with respect to local lands. We also applied the cluster analysis to distinguish
the geochemical associations of the trace elements due to its importance to the baseline. Approximately three major associations
including the Fe–Mn-oxides related, Al oxides or Al-bearing-clay-mineralogy related and sulfide- related associations were
observed from the dendrogram. 相似文献
The effect law of deformation and failure of a jointed rock mass is essential for underground engineering safety and stability evaluation. In order to study the evolution mechanism and precursory characteristics of instability and failure of jointed rock masses, uniaxial compression and acoustic emission (AE) tests are conducted on sandstones with different joint dip angles. To simulate the mechanical behavior of the rock, a jointed rock mass damage constitutive model with AE characteristic parameters is created based on damage mechanics theory and taking into account the effect of rock mass structure and load coupling. To quantify the mechanism of rock instability, a cusp catastrophe model with AE characteristic parameters is created based on catastrophe theory. The results indicate that when the joint dip angle increases from 0° to 90°, the failure mechanism of sandstone shifts from tensile to shear, with 45° being the critical failure mode. Sandstone's compressive strength reduces initially and subsequently increases, resulting in a U-shaped distribution. The developed damage constitutive model's theoretical curve closely matches the test curve, indicating that the model can reasonably describe the damage evolution of sandstone. The cusp catastrophe model has a high forecast accuracy, and when combined with the damage constitutive model, the prediction accuracy can be increased further. The research results can provide theoretical guidance for the safety and stability evaluation of underground engineering.
Lengshuiqing is part of the late Proterozoic igneous province from the western margin of the Yangtze craton. The Lengshuiqing area comprises five ultramafic–mafic intrusions, emplaced in the late Proterozoic Yanbian Group. The intrusions from Lengshuiqing contain cumulate ultramafic zones (peridotite + olivine pyroxenite), with cumulus olivine and Cr-spinel, and intercumulus pyroxenes, hornblende, phlogopite and plagioclase. Ni–Cu ore (pyrrhotite + pentlandite + chalcopyrite) is hosted in the ultramafic zones. Olivine-free diorite–quartz diorite ± gabbro and granite zones commonly occur above the ultramafic rocks. The genesis of the intrusions (conduit-related accumulation or differentiation from stagnant magma) was investigated. The amount of sulphides in the intrusions from Lengshuiqing is one order of magnitude bigger than the sulphides that can be dissolved by a volume of mafic magma similar with the volume of the intrusions. Most intrusions from Lengshuiqing have bulk composition (peridotite ± diorite ± granite) more magnesian (MgO = 21–22%; Mg# > 78) than the deduced composition of their parental magma (MgO = 9–11%; Mg# = 64–67). This indicates the accumulation of sulphide and mafic silicates from a volume of magma much bigger than the volume of the intrusions, which can be explained by the fractionation from magma ascending through the intrusions to shallower depths. A continuous supply and vent of magma is consistent with the lack of chilled margins, the melting of the wall rocks and the generation of high-temperature mineral assemblages (K-feldspar, diopside, and sillimanite) in the Yanbian Group. The intrusions from Lengshuiqing are seen as microchambers on conduits draining olivine-, Cr-spinel-, and sulphide-bearing mafic magma from a larger staging chamber. 相似文献
The sea ice conditions in the Kara Sea have important impacts on Arctic shipping, oil and gas production, and marine environmental changes. In this study, sea ice coverage (CR) less than 30% is considered as open water, its onset and end dates are defined as Topen and Tclose, respectively. The sea ice melt onset (Tmelt) is defined as the date when ice-sea freshwater flux initially changes from ice into the ocean. Satellite-based sea ice concentration (SIC) from 1989 to 2019 shows a negative correlation between Topen and Tclose (r = –0.77, p < 0.01) in the Kara Sea. This phenomenon is also obtained through analyzing the hindcast simulation from 1994 to 2015 by a coupled ocean and sea-ice model (NAPA1/4). The model results reveal that thermodynamics dominate the sea ice variations, and ice basal melt is greater than the ice surface melt. Heat budget estimation suggests that the heat flux is significant correlated with Topen (r = –0.95, p < 0.01) during the melt period (the duration of multi-year averaged Tmelt to Topen) influenced by the sea ice conditions. Additionally, this heat flux is also suggested to dominate the interannual variation of the heat input during the whole heat absorption process (r = 0.81, p < 0.01). The more heat input during this process leads to later Tclose (r = 0.77, p < 0.01). This is the physical basis of the negative correlation between Topen and Tclose. Therefore, the duration of open water can be predicted by Topen and thence support earlier planning of marine activities. 相似文献
The chemical potential of electrons in a strong magnetic field is investigated. It is shown that the magnetic field has only a slight effect on electron chemical potential when B<1011 T, but electron chemical potential will decrease greatly when B>1011 T. The effects of a strong magnetic field on electron capture rates for 60Fe are discussed, and the result shows that the electron capture sharply decreases because of the strong magnetic field. 相似文献