首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   17篇
地质学   21篇
海洋学   1篇
天文学   7篇
综合类   1篇
自然地理   2篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2002年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
41.
ABSTRACT

This article explores changing water (in)securities in a context of urbanization and climate change in the peri-urban spaces of four South-Asian cities: Khulna (Bangladesh), Gurugram and Hyderabad (India), and Kathmandu (Nepal). As awareness of water challenges like intensifying use, deteriorating quality and climate change is growing, water security gets more scientific and policy attention. However, in peri-urban areas, the dynamic zones between the urban and the rural, it remains under-researched, despite the specific characteristics of these spaces: intensifying flows of goods, resources, people, and technologies; diversifying uses of, and growing pressures on land and water; and complex and often contradictory governance and jurisdictional institutions. This article analyses local experiences of water (in-)security, conflict and cooperation in relation to existing policies. It uses insights from the analysis of the case studies as a point of departure for a critical reflection on whether a ‘community resilience’ discourse contributes to better understanding these cases of water insecurity and conflict, and to better policy solutions. The authors argue that a community resilience focus risks neglecting important insights about how peri-urban water insecurity problems are experienced by peri-urban populations and produced or reproduced in specific socio-economic, political and policy contexts. Unless supported by in-depth hydro-social research, such a focus may depoliticize basically political questions of water (re) allocation, prioritization, and access for marginalized groups. Therefore, the authors plead for more critical awareness among researchers and policy-makers of the consequences of using a ‘community resilience’ discourse for making sense of peri-urban water (in-)security.

Key policy insights
  • There is an urgent need for more (critical) policy and scientific attention to peri-urban water insecurity, conflict, and climate change.

  • Although a changing climate will likely play a role, more attention is needed to how water insecurities and vulnerabilities in South Asia are socially produced.

  • Researchers and policy-makers should avoid using depoliticized (community) resilience approaches for basically socio-political problems.

  相似文献   
42.
Particle-tracking simulation offers a fast and robust alternative to conventional numerical discretization techniques for modeling solute transport in subsurface formations. A common challenge is that the modeling scale is typically much larger than the volume scale over which measurements of rock properties are made, and the scale-up of measurements have to be made accounting for the pattern of spatial heterogeneity exhibited at different scales. In this paper, a statistical scale-up procedure developed in our previous work is adopted to estimate coarse-scale (effective) transition time functions for transport modeling, while two significant improvements are proposed: considering the effects of non-stationarity (trend), as well as unresolved (residual) heterogeneity below the fine-scale model. Rock property is modeled as a multivariate random function, which is decomposed into the sum of a trend (which is defined at the same resolution of the transport modeling scale) and a residual (representing all heterogeneities below the transport modeling scale). To construct realizations of a given rock property at the transport modeling scale, multiple realizations of the residual components are sampled. Next, a flow-based technique is adopted to compute the effective transport parameters: firstly, it is assumed that additional unresolved heterogeneities occurring below the fine scale can be described by a probabilistic transit time distribution; secondly, multiple realizations of the rock property, with the same physical size as the transport modeling scale, are generated; thirdly, each realization is subjected to particle-tracking simulation; finally, probability distributions of effective transition time function are estimated by matching the corresponding effluent history for each realization with an equivalent medium consisting of averaged homogeneous rock properties and aggregating results from all realizations. The proposed method is flexible that it does not invoke any explicit assumption regarding the multivariate distribution of the heterogeneity.  相似文献   
43.
There is a tank hewn into coastal Pleistocene limestone near Diu city on the Saurashtra Peninsula of western India. Site survey and a review of similar structures worldwide provide evidence that this tank could have been used for holding fish or Murex snails. The approximately 5 × 5 m tank is connected to the sea by a 1‐m‐deep canal; today it would be impossible to use the tank, given that not even the high spring tides can fill it. It is suggested that the Diu coast was uplifted by ∼0.5 m after the tank was hewn in the coastal platform. Since that time, the carved surfaces have been modified by coastal karst dissolution and have developed deep gouge marks. Uplift of the Diu coast raises the possibility of a major seismic event in Diu during the latter part of the last millennium.  相似文献   
44.
45.
46.
Abate  Rediat  Hetharua  Buce Hanoch  Patil  Vishal  Lin  Daner  Kifle  Demeke  Liang  Junrong  Chen  Changping  Sun  Lin  Kao  Shuh-Ji  Bi  Yonghong  Huang  Bangqin  Gao  Yahui 《中国海洋湖沼学报》2023,41(1):203-214
Journal of Oceanology and Limnology - The response of phytoplankton and its satellite bacteria to various concentrations (0.01%–10% v/v) of ethanol is studied. To elucidate the effect of...  相似文献   
47.
This study draws attention on the extreme precipitation changes over the eastern Himalayan region of the Teesta river catchment. To explore the precipitation variability and heterogeneity, observed (1979–2005) and statistically downscaled (2006–2100) Coupled Model Intercomparison Project Phase Five earth system model global circulation model daily precipitation datasets are used. The trend analysis is performed to analyze the long-term changes in precipitation scenarios utilizing non-parametric Mann–Kendall (MK) test, Kendall Tau test, and Sen’s slope estimation. A quantile regression (QR) method has been applied to assess the lower and upper tails changes in precipitation scenarios. Precipitation extreme indices were generated to quantify the extremity of precipitation in observed and projected time domains. To portrait the spatial heterogeneity, the standard deviation and skewness are computed for precipitation extreme indices. The results show that the overall precipitation amount will be increased in the future over the Himalayan region. The monthly time series trend analysis based results reflect an interannual variability in precipitation. The QR analysis results showed significant increments in precipitation amount in the upper and lower quantiles. The extreme precipitation events are increased during October to June months; whereas, it decreases from July to September months. The representative concentration pathway (RCP) 8.5 based experiments showed extreme changes in precipitation compared to RCP2.6 and RCP4.5. The precipitation extreme indices results reveal that the intensity of precipitation events will be enhanced in future time. The spatial standard deviation and skewness based observations showed a significant variability in precipitation over the selected Himalayan catchment.  相似文献   
48.
The coastline constitutes a very sensitive geomorphic domain which is constantly subjected to dynamic coastal processes and stores vital information regarding past sea level fluctuations. A ground-penetrating radar (GPR) survey was carried out along the northern coast of the Gulf of Kachchh which is one of the largest macrotidal inlets of the Arabian Sea, Western India. Our studies have delineated several radar surfaces and radar facies which reflect the internal architecture and sediment body geometry, which can be related to the processes acting along this coastline. Various radar facies, namely, beach ridge (Br), washover (Wo), coastal dune (Cd), swale (Sw), berm plain (Bp), and sandsheet facies (Ss) have been identified. The GPR studies successfully documented the subsurface presence of ancient beach ridge system towards the sea, and the coastal dunes towards the land side. The results are suggestive of signatures of changes in sea level and the coastline being prone to high energy events in the recent past. The GPR has been found to be an important non-invasive geophysical tool in the study of past coastal dynamics.  相似文献   
49.
We present the first results from the ‘Low Energy Detector’ pay-load of ‘Solar X-ray Spectrometer (SOXS)’ mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of the Indian Space Research Organization (ISRO). The SLD payload employs the state-of-the-art solid state detectors viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (-20°C). The dynamic energy range of Si PIN and CZT detectors are 4–25 keV and 4–56 keV respectively. The Si PIN provides sub-keV energy resolution while CZT reveals ∼1.7keV energy resolution throughout the dynamic range. The high sensitivity and sub-keV energy resolution of Si PIN detector allows the measuring of the intensity, peak energy and equivalent width of the Fe-line complex at approximately 6.7 keV as a function of time in all 8 M-class flares studied in this investigation. The peak energy (E p) of Fe-line feature varies between 6.4 and 6.8 keV with increase in temperature from 9 to 34 MK. We found that the equivalent width (ω) of Fe-line feature increases exponentially with temperature up to 20 MK but later it increases very slowly up to 28 MK and then it remains uniform around 1.55 keV up to 34 MK. We compare our measurements ofw with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both Epand ω with temperature as the changes in the ionization and recombination conditions in the plasma during the flare interval and as a consequence the contribution from different ionic emission lines also varies.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号