首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   17篇
地质学   21篇
海洋学   1篇
天文学   7篇
综合类   1篇
自然地理   2篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2002年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
11.
The presence of arsenic (As) in water is of great public concern. Arsenic exists in three common valence states viz., As(0) metalloid arsenic, As(III) (arsenite) and As(V) (arsenate). Arsenite [As(III)] is the most toxic form among arsenicals which, predominates in anaerobic conditions, generally in flooded soils and in the water with high BOD. Experiments were conducted to investigate the effect of As(III) on the mycorrhization in vetiver (Vetiveria zizanioides (L.) Nash) grass in hydroponics. Studies showed significant alteration in the mycorrhizal colonization in the roots of vetiver exposed to higher concentrations of As(III) starting from 1.0, 2.0, 3.0, 4.0 to 5.0 mg/L prepared in 5% Hoagland nutrient solution without addition of phosphate ions. Considerable reduction in the mycorrhizal intensity (M) was observed in all the treatment sets as compared to the control suggesting a negative impact of the As(III) on the mycorrhizal association. Simultaneously, the study also showed that, As(III) is toxic to the vetiver plants having mycorrhizal association however plants with non‐mycorrhizal (cleansed) roots were found to be able to survive for a longer period exposed to As(III).  相似文献   
12.
Recent field prospecting in the Cretaceous sequences of the lower Narmada valley has led to the discovery of three isolated archosaur teeth from the upper part of marine Cretaceous rocks of the Bagh Group. The specimens were recovered by surface prospecting from an oyster‐bearing green sandstone bed occurring at the top of the Coralline Limestone (Coniacian) from a site near Phutibawri village, Dhar District, Madhya Pradesh, India. Of the three teeth recovered from this horizon, two are identified with abelisaurid dinosaurs and the third one with an indeterminate crocodile. The abelisaurid teeth conform to the premaxillary and maxillary tooth morphology of Majungasaurus and Indosuchus. Earlier reports of abelisaurid dinosaurs from India are from the Upper Cretaceous (Maastrichtian) Lameta Group of Jabalpur, Pisdura (Central India) and Balasinor (Western India) and Upper Cretaceous (Late Maastrichtian) Kallamedu Formation (South India). As no associated age diagnostic fossils are found, the specimens described here are considered to represent pre‐Late to Late Maastrichtian age based on the known ages of the underlying and overlying formations. The new finds, therefore, document stratigraphically the oldest occurrence of abelisaurid dinosaurs known from the Indian subcontinent.  相似文献   
13.
The surface of the bacterial cells before the biosorption of Zn(II) ion has been found rough, heterogeneous, and non‐crystalline together with tremendous protrusions and negatively charged functional groups. The bacterium was characterized as rod shaped with Gram‐negative type of cell wall structure. In reaction dynamics, pseudo‐second‐order kinetics with higher linear correlation coefficient (R2) ranging between 0.97 and 0.99, lower sum of square errors (SSE) (0.035–0.081) and chi (χ2) (0.0013–0.009) provided a better explanation of sorption of Zn(II) ion on bacterium surface as compared to pseudo‐first‐order model. The removal of Zn(II) was governed by both film and intra‐particle diffusion at onset and later stage of sorption of metal ion on the surface of bacterial cells. The R2 (0.92–0.94) for intra‐particle diffusion model was quite higher with lower values of SSE (9.56–16.33) and chi (χ2) (11.26–19.65) against the Bangham's model. The positive value of ΔH (16.628 × 10?6 kJ/mol) and ΔS (5320.90 kJ/mol/K) showed that the biosorption of Zn(II) ion across liquid phase on bacterial surface was endothermic with increased randomness at solid–liquid interface. The negative values of ΔG demarcated the whole process as spontaneous in nature. In the present work, the distribution coefficient was found to be > 0.5 at various temperature ranges. At the attainment of equilibrium, the residual concentration of Zn(II) ion in liquid phase was around 0.6 mg/L, which was much below the limit described by United States Environmental Protection Agency (USEPA), i.e. 5 mg/L.  相似文献   
14.
This paper evaluates the potential of a terrestrial laser scanner (TLS) to characterize forest canopy fuel characteristics at plot level. Several canopy properties, namely canopy height, canopy cover, canopy base height and fuel strata gap were estimated. Different approaches were tested to avoid the effect of canopy shadowing on canopy height estimation caused by deployment of the TLS below the canopy. Estimation of canopy height using a grid approach provided a coefficient of determination of R2 = 0.81 and an RMSE of 2.47 m. A similar RMSE was obtained using the 99th percentile of the height distribution of the highest points, representing the 1% of the data, although the coefficient of determination was lower (R2 = 0.70). Canopy cover (CC) was estimated as a function of the occupied cells of a grid superimposed upon the TLS point clouds. It was found that CC estimates were dependent on the cell size selected, with 3 cm being the optimum resolution for this study. The effect of the zenith view angle on CC estimates was also analyzed. A simple method was developed to estimate canopy base height from the vegetation vertical profiles derived from an occupied/non-occupied voxels approach. Canopy base height was estimated with an RMSE of 3.09 m and an R2 = 0.86. Terrestrial laser scanning also provides a unique opportunity to estimate the fuel strata gap (FSG), which has not been previously derived from remotely sensed data. The FSG was also derived from the vegetation vertical profile with an RMSE of 1.53 m and an R2 = 0.87.  相似文献   
15.
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold’s SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold’s and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold’s SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold’s SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold’s SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.  相似文献   
16.
Numerical simulation of fault reactivation phenomenon   总被引:1,自引:0,他引:1  
Two-dimensional finite element method was used for evaluating the effect of orthogonal compression on precursor faults. The tendency of reactivation of precursor faults as thrust or normal was analyzed involving the positions and angles of precursor faults with the stresses, strains and displacements. Twelve cases were taken up with different combinations of precursor fault angles (high, >45° and low, <45°) and fault positions for analysis. Different positions and angles of precursor faults are correlated with stresses, strains, and displacements and are discussed in detail. It is hoped that this would help in understanding the past and the present geodynamics of the earth’s crust.  相似文献   
17.
The contribution of emissions from agricultural facilities is rapidly becoming a major concern for local and regional air quality. Characterization of particle properties such as physical size distribution and chemical composition can be valuable in understanding the processes contributing to emissions and ultimate fate of particulate matter from agricultural facilities. A measurement campaign was conducted at an Iowa, deep-pit, three-barn swine finishing facility to characterize near-source ambient particulate matter. Size-specific mass concentrations were determined using minivol samplers, with additional size distribution information obtain using optical particle counters. Particulate composition was determined via ion chromatographic analysis of the collected filters. A thermal-CO2 elemental/organic carbon analyzer measured particulate carbon. The chemical composition and size distribution of sub-micron particles were determined via real-time aerosol mass spectrometry. Primary particulate was not found to be a major emission from the examined facility, with filter-based impactor samples showing average near-source increases (~15–50 m) in ambient PM10 of 5.8 ± 2.9 μg m−3 above background levels. PM2.5 also showed contribution attributable to the facility (1.7 ± 1.1 μg m−3). Optical particle counter analysis of the numerical size distributions showed bimodal distributions for both the upwind and downwind conditions, with maximums around 2.5 μm and below the minimum quantified diameter of 0.3 μm. The distributions showed increased numbers of coarse particles (PM10) during periods when wind transport came from the barns, but the differences were not statistically significant at the 95% confidence level. The PM10 aerosols showed statistically increased concentrations of sulfate, nitrate, ammonium, calcium, organic carbon, and elemental carbon when the samplers were downwind from the pig barns. Organic carbon was the major constituent of the barn-impacted particulate matter in both sub-micron (54%) and coarse size (20%) ranges. The AMS PM1 chemical speciation showed similar species increases, with the exception of and Ca+2, the latter not quantified by the AMS.  相似文献   
18.
19.
Numerical techniques for subsurface flow and transport modeling are often limited by computational limitations including fine mesh and small time steps to control artificial dispersion. Particle-tracking simulation offers a robust alternative for modeling solute transport in subsurface formations. However, the modeling scale usually differs substantially from the rock measurement scale, and the scale-up of measurements have to be made accounting for the pattern of spatial heterogeneity exhibited at different scales. Therefore, it is important to construct accurate coarse-scale simulations that are capable of capturing the uncertainties in reservoir and transport attributes due to scale-up. A statistical scale-up procedure developed in our previous work is extended by considering the effects of unresolved (residual) heterogeneity below the resolution of the finest modeling scale in 3D. First, a scale-up procedure based on the concept of volume variance is employed to construct realizations of permeability and porosity at the (coarse) transport modeling scale, at which flow or transport simulation is performed. Next, to compute various effective transport parameters, a series of realizations exhibiting detailed heterogeneities at the fine scale, whose domain size is the same as the transport modeling scale, are generated. These realizations are subjected to a hybrid particle-tracking simulation. Probabilistic transition time is considered, borrowing the idea from the continuous time random walk (CTRW) technique to account for any sub-scale heterogeneity at the fine scale level. The approach is validated against analytical solutions and general CTRW formulation. Finally, coarse-scale transport variables (i.e., dispersivities and parameterization of transition time distribution) are calibrated by minimizing the mismatch in effluent history with the equivalent averaged models. Construction of conditional probability distributions of effective parameters is facilitated by integrating the results over the entire suite of realizations. The proposed method is flexible, as it does not invoke any explicit assumption regarding the multivariate distribution of the heterogeneity. In contrast to other hierarchical CTRW formulation for modeling multi-scale heterogeneities, the proposed approach does not impose any length scale requirement regarding sub-grid heterogeneities. In fact, it aims to capture the uncertainty in effective reservoir and transport properties due to the presence of heterogeneity at the intermediate scale, which is larger than the finest resolution of heterogeneity but smaller than the representative elementary volume, but it is often comparable to the transport modeling scale.  相似文献   
20.
The early thermal evolution of Moon has been numerically simulated to understand the magnitude of the impact-induced heating and the initially stored thermal energy of the accreting moonlets. The main objective of the present study was to understand the nature of processes leading to core–mantle differentiation and the production and cooling of the initial convective magma ocean. The accretion of Moon was commenced over a time scale of 100 yr after the giant impact event around 30–100 million years in the early solar system. We studied the dependence of the planetary processes on the impact scenarios, the initial average temperature of the accreting moonlets, and the size of the protomoon that accreted rapidly beyond the Roche limit within the initial 1 yr after the giant impact. The simulations indicate that the accreting moonlets should have a minimum initial averaged temperature around 1600 K. The impacts would provide additional thermal energy. The initial thermal state of the moonlets depends upon the environment prevailing within the Roche limit that experienced episodes of extensive vaporization and recondensation of silicates. The initial convective magma ocean of depth more than 1000 km is produced in the majority of simulations along with the global core–mantle differentiation in case the melt percolation of the molten metal through porous flow from bulk silicates was not the major mode of core–mantle differentiation. The possibility of shallow magma oceans cannot be ruled out in the presence of the porous flow. Our simulations indicate the core–mantle differentiation within the initial 102 to 103 yr of the Moon accretion. The majority of the convective magma ocean cooled down for crystallization within the initial 103 to 104 yr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号