首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2891篇
  免费   56篇
  国内免费   46篇
测绘学   276篇
大气科学   265篇
地球物理   553篇
地质学   1312篇
海洋学   133篇
天文学   327篇
综合类   70篇
自然地理   57篇
  2024年   18篇
  2023年   25篇
  2022年   58篇
  2021年   81篇
  2020年   71篇
  2019年   77篇
  2018年   245篇
  2017年   232篇
  2016年   217篇
  2015年   135篇
  2014年   195篇
  2013年   273篇
  2012年   162篇
  2011年   158篇
  2010年   131篇
  2009年   132篇
  2008年   116篇
  2007年   73篇
  2006年   65篇
  2005年   47篇
  2004年   37篇
  2003年   31篇
  2002年   24篇
  2001年   17篇
  2000年   26篇
  1999年   18篇
  1998年   14篇
  1997年   22篇
  1996年   13篇
  1995年   11篇
  1994年   18篇
  1993年   14篇
  1992年   7篇
  1991年   23篇
  1990年   18篇
  1989年   14篇
  1988年   10篇
  1987年   18篇
  1986年   17篇
  1985年   18篇
  1984年   12篇
  1982年   7篇
  1979年   8篇
  1978年   7篇
  1975年   7篇
  1974年   12篇
  1973年   5篇
  1972年   10篇
  1971年   5篇
  1969年   5篇
排序方式: 共有2993条查询结果,搜索用时 15 毫秒
21.
22.
Port Blair is the capital city of Andaman & Nicobar Islands, the union territory of India. More than 50% of the population of these islands lives around Port Blair Bay. Therefore the anthropogenic effects in the bay water were studied for monitoring purpose from seven stations. Physico-chemical parameters of seawater were analyzed in samples collected once in every 3 months for 2 years from seven sampling stations located in Port Blair Bay, South Andaman Island to evaluate the spatial and tidal variation. Cluster analysis and factor analysis were applied to the experimental data in an attempt to understand the sources of variation of physico-chemical parameters. In cluster analysis, the stations Junglighat Bay and Phoenix Bay having high anthropogenic influence formed a separate group. The factors obtained from factor analysis indicated that the parameters responsible for physico-chemical variations are mainly related to land run-off, sewage outfall and tidal flow.  相似文献   
23.
Analytical solutions for constant‐rate pumping tests are widely used to infer aquifer properties. In this note, we implement a methodology that approximates the time‐varying pumping record as a series of segments with linearly varying pumping rates. We validate our approach using an analytical solution for a sinusoidally varying pumping test. We also apply our methodology to analyze synthetic test data and compare the results with those from a commonly used method where rate variations are represented by a series of constant‐rate steps.  相似文献   
24.
A verification framework for interannual-to-decadal predictions experiments   总被引:1,自引:1,他引:1  
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.  相似文献   
25.
A study on the potential of geological media from the vicinity of the mining site in Tummalapalle region of Andhra Pradesh in India for retardation of radionuclide migration in groundwater was conducted. The studies included the measurement of sorption coefficients for six radionuclides, uranium, thorium, lead, bismuth, radium and polonium, between two groundwater simulants and two site-specific samples of geological media. Initial parametric studies involving chemical composition, pH, calcium carbonate and organic carbon contents of both geological media and ground water simulants were carried out. Significant differences in sorption coefficients were observed as a result of varying pH, calcium carbonate and presence of trace quantities of organic contents in simulant solutions. For example, uranium has a hundred fold lower distribution coefficient in the case of simulant solution having higher carbonate content. Similarly, in the case of the geological media having higher calcium carbonate and organic carbon contents, higher distribution coefficients were obtained for all radionuclides. Among the six radionuclides studied thorium showed the largest and radium the smallest distribution coefficient values for the soil samples assessed. The site-specific sorption coefficients will be used for contaminant transport study.  相似文献   
26.
Isochemical conversion of garnet-biotite bearing paragneiss to charnockite in the Precambrian Khondalite belt of southern Kerala is described from Ponmudi area. Petrographic evidences indicate the formation of hypersthene by the breakdown of biotite in the presence of quartz following the reaction: Biotite + quartz → hypersthene + K-feldspar + vapour. The estimated pressure — temperature conditions of metamorphism are around 5–7 kbars and 750° ± 40°C. Presence of CO2-rich, mixed CO2-H2O and H2O-rich inclusions were noticed in gneiss as well as in charnockites. Charnockites contain abundant CO2-rich inclusions.  相似文献   
27.
Western tropical Indian Ocean, Arabian Sea, and the equatorial Pacific are known as regions of intense bio-chemical-physical interactions: the Arabian Sea has the largest phytoplankton bloom with seasonal signal, while the equatorial Pacific bloom is perennial with quasi-permanent upwelling. Here, we studied three dimensional ocean thermodynamics comparing recent ocean observation with ocean general circulation model (OPYC) experiment combined with remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS). Using solar radiation parameterization representing observations that a higher abundance of chlorophyll increases absorption of solar irradiance and heating rate in the upper ocean, we showed that the mixed layer thickness decreases more than they would be under clear water conditions. These changes in the model mixed layer were consistent with Joint Global Ocean Flux Study (JGOFS) observations during the 1994-1995 Arabian Sea experiment and epi-fluorescence microscopy (EFM) on samples collected during Equatorial Pacific Ocean Climate Study (EPOCS) in November, 1988. In the Arabian Sea, as the chlorophyll concentrations peak in October (3 mg/m3) after the summer plankton bloom induced by coastal upwelling, the chlorophyll induced biological heating enhanced the sea surface temperature (SST) by as much as 0.6‡C and sub-layer temperature decreases and sub-layer thickness increases. In the equatorial Pacific, modest concentrations of chlorophyll less than 0.3 mg/m3 is enough to introduce a meridional differential heating, which results in reducing the equatorial mixed layer thickness to more than 20 m. The anomalous meridional tilting of the mixed layer bottom enhances off equatorial westward geostrophic currents. Consequently, the equatorial undercurrent transports more water from west to east. We proposed that these numerical model experiments with use of satellite andin situ ocean observations are consistent under three dimensional ocean circulation theory combined with solar radiation transfer process.  相似文献   
28.
The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computational cost and complexity of the process. The paper presents issues in analyzing large multi/hyper spectral image data sets for dimensionality reduction, coping with intra pixel spectral variations, and selection of a flexible classifier with robust learning process. Experiments conducted revealed that a computationally cheap algorithm that uses Hamming distance between the pixel vectors of different bands to eliminate redundant bands was quite effective in helping reduce the dimensionality. The paper also presents the concept of extended mathematical morphological profiles for segregating the input pixel vectors into pure or mixed categories which will enable further computational cost reductions. The proposed method’s overall classification accuracy is tested with IRS data sets and the Airborne Visible Infrared Imaging Spectroradiometer Indian Pines hyperspectral benchmark data set and presented.  相似文献   
29.
Abstract

A finite element model to simulate runoff and soil erosion from agricultural lands has been developed. The sequential solutions of the governing differential equations were found: Richards' equation with a sink term for infiltration and soil water dynamics under cropped conditions; St Venant equation with kinematic wave approximation for overland and channel flow; and sediment continuity equation, for soil erosion. The model developed earlier has been improved to simulate erosion/deposition in impoundments and predicted and observed soil loss values were in reasonably good agreement when the model was tested for a conservation bench terrace (CBT) system. The finite element model was extensively applied to study the hydrological behaviour of a CBT system vis-à-vis the conventional system of sloping borders. The model estimates runoff and soil loss reasonably well, under varying conditions of rainfall and at different crop growth stages. The probable reasons for discrepancies between observation and simulation are reported and discussed. Sensitivity analysis was carried out to study the effect of various hydrological, soil and topographical parameters, such as ratio of contributing to receiving areas, weir length, depth of impoundment, slope of contributing area, etc. on the flow behaviour in a CBT system.  相似文献   
30.
Space weather prediction involves advance forecasting of the magnitude and onset time of major geomagnetic storms on Earth. In this paper, we discuss the development of an artificial neural network-based model to study the precursor leading to intense and moderate geomagnetic storms, following halo coronal mass ejection (CME) and related interplanetary (IP) events. IP inputs were considered within a 5-day time window after the commencement of storm. The artificial neural network (ANN) model training, testing and validation datasets were constructed based on 110 halo CMEs (both full and partial halo and their properties) observed during the ascending phase of the 24th solar cycle between 2009 and 2014. The geomagnetic storm occurrence rate from halo CMEs is estimated at a probability of 79%, by this model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号