首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31380篇
  免费   1611篇
  国内免费   2958篇
测绘学   2047篇
大气科学   3378篇
地球物理   6229篇
地质学   15140篇
海洋学   2207篇
天文学   1983篇
综合类   2930篇
自然地理   2035篇
  2024年   63篇
  2023年   158篇
  2022年   359篇
  2021年   449篇
  2020年   376篇
  2019年   391篇
  2018年   5117篇
  2017年   4393篇
  2016年   2978篇
  2015年   593篇
  2014年   548篇
  2013年   473篇
  2012年   1546篇
  2011年   3189篇
  2010年   2469篇
  2009年   2727篇
  2008年   2218篇
  2007年   2723篇
  2006年   361篇
  2005年   503篇
  2004年   621篇
  2003年   600篇
  2002年   430篇
  2001年   250篇
  2000年   307篇
  1999年   324篇
  1998年   278篇
  1997年   272篇
  1996年   192篇
  1995年   172篇
  1994年   174篇
  1993年   151篇
  1992年   111篇
  1991年   91篇
  1990年   69篇
  1989年   53篇
  1988年   42篇
  1987年   34篇
  1986年   24篇
  1985年   9篇
  1984年   11篇
  1983年   16篇
  1982年   10篇
  1981年   29篇
  1980年   24篇
  1979年   5篇
  1976年   6篇
  1958年   3篇
  1957年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
国土资源部门户网站是国土资源信息化建设的重要内容之一,历经10余年的发展建设,在服务国土资源管理决策和信息社会化需求方面发挥了较为重要的作用。本文围绕国土资源部门户网站信息资源整合建设实践,系统地阐述了网站的整合目标、原则、分类体系,着重介绍了系统架构、实现方法与建设成果。  相似文献   
42.
巷道作为矿山的重要组成部分,在矿山开发建设过程中发挥着重要作用,基于虚拟现实技术的巷道三维模拟能够为采矿工程、安全生产、施工、人员及设备管理等提供直观的数据展示和决策支持,其精确程度直接影响着矿山的工程质量与采选能力。本文主要探讨巷道三维建模数据组织方法,直壁拱形断面巷道三维建模的关键算法,并基于实验数据,利用OGRE三维引擎技术完成巷道三维自动建模,验证了数据组织和算法的有效性和优越性。  相似文献   
43.

当前,时空信息、定位导航服务已成为重要的新型基础设施,在通用人工智能的驱动下,大模型引领的智能时代已经到来,越来越强大的大模型将在测绘时空信息智能处理与应用中发挥越来越重要的作用。以大模型为研究范式,总结大模型在测绘时空信息智能处理的现状与进展,分析大模型在测绘时空信息智能处理面临的挑战,阐述多模态融合与理解架构设计、提示工程优化微调以及人在回路引导决策3个核心方面在时空信息测绘大模型中的关键作用。针对行业理解深度、数据安全隐患、内容可信度保障以及训练部署成本优化4个方面,展望时空信息测绘大模型面临的挑战与发展趋势。

  相似文献   
44.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
45.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   
46.
The topographic bias is defined as the error/bias committed by continuing the external gravity field inside the topographic masses by a harmonic function. We study the topographic bias given by a digital terrain model defined by a spherical template, and we show that the topographic bias is given only by the potential of an inner-zone cap, and it equals the bias of the Bouguer shell, independent of the size of the cap. Then we study the effect on the real Earth by decomposing its topography into a template, and we show also in this case that the topographic bias is that of the Bouguer shell, independent of the shape of the terrain. Finally, we show that the topographic potential of the terrain at the geoid can be determined to any precision by a Taylor expansion outside the Earth’s surface. The last statement is demonstrated by a Taylor expansion to fourth order.  相似文献   
47.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation.  相似文献   
48.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
49.
This paper presents a simple and effective approach that incorporates single-frequency, L1 time-differenced GPS carrier phase (TDCP) measurements without the need of ambiguity resolution techniques and the complexity to accommodate the delayed-state terms. Static trial results are included to illustrate the stochastic characteristics and effectiveness of the TDCP measurements in controlling position error growth. The formulation of the TDCP observation model is also described in a 17-state tightly-coupled GPS/INS iterative, extended Kalman filter (IEKF) approach. Preliminary land vehicle trial results are also presented to illustrate the effectiveness of the TDCP which provides sub-meter positional accuracies when operating for more than 10 min.  相似文献   
50.
With growing urban expanses, one of the pre-requisites for effective governance is Urban Information Systems (UIS) with content down to individual properties (and individuals). The basic input i.e., a map, in UIS should show individual property boundaries showing the plan outline of all structures existing within, at a scale of 1:1000 and larger with sub-metre to centimeters planimetric and geometric accuracy. With very high resolution remote sensing data of the order of 1m available in hand, it is possible to prepare maps with high resolution spatial content. The present exercise demonstrates a method of preparing a geometrically and planimetrically accurate urban cadastral map on very large scale for a small area of about 5 sq km. IKONOS merged data with 1m resolution is used for the purpose. Mapping was done in conjunction with on-site measurements and sketches. Guides are used to maintain shape symmetry and accuracy of buildings and other features. Working out cost of mapping per unit area is another objective in the present exercise. For want of fully or semi-automatic methods of information extraction from very high resolution remote sensing data, it is imperative that mapping should be carried out in conjunction with some on-site measurements wherever necessary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号