首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23250篇
  免费   4414篇
  国内免费   5577篇
测绘学   1488篇
大气科学   4550篇
地球物理   6011篇
地质学   11852篇
海洋学   2782篇
天文学   992篇
综合类   2632篇
自然地理   2934篇
  2024年   98篇
  2023年   371篇
  2022年   1108篇
  2021年   1244篇
  2020年   1028篇
  2019年   1200篇
  2018年   1376篇
  2017年   1241篇
  2016年   1422篇
  2015年   1094篇
  2014年   1432篇
  2013年   1417篇
  2012年   1341篇
  2011年   1422篇
  2010年   1342篇
  2009年   1328篇
  2008年   1199篇
  2007年   1139篇
  2006年   897篇
  2005年   924篇
  2004年   651篇
  2003年   665篇
  2002年   682篇
  2001年   651篇
  2000年   711篇
  1999年   1033篇
  1998年   817篇
  1997年   887篇
  1996年   819篇
  1995年   693篇
  1994年   565篇
  1993年   519篇
  1992年   406篇
  1991年   293篇
  1990年   242篇
  1989年   180篇
  1988年   180篇
  1987年   128篇
  1986年   110篇
  1985年   72篇
  1984年   51篇
  1983年   44篇
  1982年   36篇
  1981年   28篇
  1980年   36篇
  1979年   29篇
  1978年   15篇
  1976年   11篇
  1975年   14篇
  1958年   18篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
991.
During the Cambrian, gypsum-bearing evaporites formed in the Sichuan Basin, SW China. These rocks are important for oil and gas sealing, but details of their distribution and origin are not well established. This study examines the regional distribution and origin of the gypsum-bearing evaporites using a comprehensive analysis of drilling data from 34 wells, 5 measured cross-sections in the basin and surrounding area, and 96 maps of area-survey data. Results show that in the stratigraphic succession, the gypsum-bearing evaporites occur mainly in the Lower Cambrian Longwangmiao Formation, the Middle Cambrian Douposi Formation, and the Middle-Upper Cambrian Xixiangchi Group. Geographically, the rocks are found mainly in the southeastern part of the basin, and the distribution of deposits shows an overall SW-NE trend. The sedimentary environments for evaporite formation were evaporative lagoon and inter-platform basin in a platform setting. Gypsum was generated by the underwater concentration of sea water in a strongly evaporative environment. Both an evaporative restricted platform and a mixeddeposition restricted platform model appear to be applicable to the development of gypsum in the Sichuan Basin. The gypsum-bearing evaporites with the best sealing capacity are located mostly in the southeastern part of the basin. These constraints can be applied directly to regional exploration, and have implications for the regional paleogeography and paleoclimate.  相似文献   
992.
We study the fragmentation properties in the protoplanetary disk and properties of the resultant self-gravitating clumps using our newly constructed disk model. Our disk model includes the mass inflall term from a molecular cloud core and the photoevaporation winds effect. We adopt the conventional fragmentation criterion to judge whether a protoplanetary disk can fragment. In this work, we follow our previous work to investigate the properties of the resultant self-gravitating clumps. In our calculation, the initial masses of the resultant self-gravitating clumps lie in the range of tens of MJ to more than one hundred of MJ, where MJ is the Jupiter mass. These initial masses can seemingly account for the masses of extrasolar planets in magnitude. We also calculate the subsequent gas accretion of clumps in 1.27 × 104 yr after the formation of self-gravitating clumps. We find that the subsequent gas accretion of self-gravitating clumps is very efficient, and the clump masses grow to hundreds of MJ and the physical radii Rc of clumps increase to about 10 AU. Additionally, we also calculate the orbital migration of clumps. We find that most clumps have short migration timescale to be accreted onto the protostar, and only a small fraction of clumps have long migration timescale (>106 yr) to successfully become gas giant planets. These results are consistent with previous studies.  相似文献   
993.
In the development of naturally fractured reservoirs (NFRs), the existence of natural fractures induces severe fingering and breakthrough. To manage the flooding process and improve the ultimate recovery, we propose a numerical workflow to generate optimal production schedules for smart wells, in which the inflow control valve (ICV) settings can be controlled individually. To properly consider the uncertainty introduced by randomly distributed natural fractures, the robust optimization would require a large ensemble size and it would be computationally demanding. In this work, a hierarchical clustering method is proposed to select representative models for the robust optimization in order to avoid redundant simulation runs and improve the efficiency of the robust optimization. By reducing the full ensemble of models into a small subset ensemble, the efficiency of the robust optimization algorithm is significantly improved. The robust optimization is performed using the StoSAG scheme to find the optimal well controls that maximize the net-present-value (NPV) of the NFR’s development. Due to the discrete property of a natural fracture field, traditional feature extraction methods such as model-parameter-based clustering may not be directly applicable. Therefore, two different kinds of clustering-based optimization methods, a state-based (e.g., s w profiles) clustering and a response-based (e.g., production rates) clustering, are proposed and compared. The computational results show that the robust clustering optimization could increase the computational efficiency significantly without sacrificing much expected NPV of the robust optimization. Moreover, the performance of different clustering algorithms varies widely in correspondence to different selections of clustering features. By properly extracting model features, the clustered subset could adequately represent the uncertainty of the full ensemble.  相似文献   
994.
Fan  Jian-Jun  Li  Cai  Liu  Jin-Heng  Wang  Ming  Liu  Yi-Ming  Xie  Chao-Ming 《International Journal of Earth Sciences》2018,107(5):1755-1775
International Journal of Earth Sciences - In this paper, we present new major and trace element chemical data for the basalts and phonolites of the Nare ocean island fragment (NaOI), as well as...  相似文献   
995.
The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114?×?104 m3/year in 2017 to 11,875?×?104 m3/year in 2021, and to 17,039?×?104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277?×?104 m3/year in 2017 to 1857?×?104 m3/year in 2021, and to 510?×?104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.  相似文献   
996.
This study concentrates on the petrological and geochemical investigation of mafic rocks embedded within the voluminous Triassic June Complex of the central Sanandaj–Sirjan zone (Iran), which are crucial to reconstruct the geodynamics of the Neotethyan passive margin. The Triassic mafic rocks are alkaline to sub-alkaline basalts, containing 43.36–49.09 wt% SiO2, 5.19–20.61 wt% MgO and 0.66–4.59 wt% total alkalis. Based on MgO concentrations, the mafic rocks fall into two groups: cumulates (Mg# = 51.61–58.94) and isotropic basaltic liquids (Mg# = 24.54–42.66). In all samples, the chondrite-normalized REE patterns show enrichment of light REEs with variable (La/Yb)N ratios ranging from 2.48 to 9.00, which confirm their amalgamated OIB-like and E-MORB-like signatures. Enrichment in large-ion lithophile elements and depletion in high field strength elements (HFSE) relative to the primitive mantle further support this interpretation. No samples point to crustal contamination, all having undergone fractionation of olivine + clinopyroxene + plagioclase. Nevertheless, elemental data suggest that the substantial variations in (La/Sm)PM and Zr/Nb ratios can be explained by variable degrees of partial melting rather than fractional crystallization from a common parental magma. The high (Nb/Yb)PM ratio in the alkaline mafic rocks points to the mixing of magmas from enriched and depleted mantle sources. Abundant OIB alkaline basalts and rare E-MORB appear to be linked to the drifting stage on the northern passive margin of the Neotethys Ocean.  相似文献   
997.
Additive manufacturing is considered more sustainable than traditional manufacturing due to its efficient energy and materials usage. However, previous literature indicates that this suggestion is applicable only for the polymer materials, and the environmental issues of additive manufacturing with metallic materials are still not clear. With the method of life cycle assessment, this paper analyzes and compares the energy consumptions and environmental impacts of direct energy deposition and traditional machining processes for a typical metal part. Further, the article attempts to identify the significant issues in the two manufacturing options that contribute most to the environmental impacts. Six environmental impacts were assessed in this study: global warming potential (GWP); acidification potential (AP); eutrophication potential; ozone depletion potential (ODP); photochemical ozone creation potential (POCP); and abiotic depletion potential (ADP). The results show that the gear laser fabrication process consumes more energy and releases more negative emissions compared with traditional gear manufacturing processes. The results of GWP, AP, ODP, ADP and POCP of the traditional gear manufacturing are only 30.33, 43.42, 17, 65.05 and 54.68% of the gear laser fabrication.  相似文献   
998.
In this paper, the adsorption and degradation phenomenon involved in the photocatalytic degradation of dimethyl phthalates (DMPs) by titanium dioxide (TiO2) was studied. A variety of operating variables were selected firstly. Then, it was proved that even for such weak adsorption properties molecules as DMP, adsorption was still an important prerequisite for photolysis. A surface-mediated reaction process was proposed that the photodegradation of DMP assisted by TiO2 particles occurred primarily at the surface of the photocatalyst rather than in the homogeneous phase. According to Langmuir–Hinshelwood model, the adsorption constant determined from the dark adsorption was far less than that obtained in the light condition. Enhanced DMP adsorption on the surface of TiO2 under irradiation was the possible reason for the improvement of photodegradation efficiency. Under the irradiation of light, a synergistic mechanism of adsorption and photocatalysis was responsible for DMP degradation. The quantitative analysis by adding scavengers indicated that ·OH radical was primarily responsible for the photodegradation of DMP. It was further verified that ·OH was produced much more from conduction band electrons rather than valance band holes toward photodegradation of DMP by adding foreign Cu2+.  相似文献   
999.
Internal erosion is the most common reason which induces failure of embankment dams besides overtopping. Relatively large leakage is frequently concentrated at defects of impervious element, and this will lead to eventual failure. The amount of leakage depends not only on integrity of impervious element, but also on dam height, shape of valley, shape of impervious element and water level in reservoir. The integrity of impervious element, which represents the relative level of seepage safety, is not easy to be determined quantitatively. A simple method for generalization of steady seepage state of embankment dams with thin impervious element is proposed in this paper. The apparent overall value of permeability coefficient for impervious element can be obtained by this method with reasonable accuracy and efficiency. A defect parameter of impervious element is defined as an index to characterize seepage safety of embankment dams. It equals the ratio of the apparent overall value of permeability coefficient to the measured value in laboratory for intact materials. Subsequently, seepage safety of three dams is evaluated and the evolution of defect level of impervious element of dams is investigated. It is proved that the newly proposed method in this paper is feasible in the evaluation of relative seepage safety level of embankment dams with thin impervious element.  相似文献   
1000.
With accelerating urbanization in China, urban waterlogging has had a serious impact on urban sustainable development and citizen welfare. Simple urban rainstorm intensity formulas with a monotonous frequency distribution type cannot meet the practical needs of urban drainage planning and design. This study focuses on the development of urban rainstorm intensity formulas based on spatial diversity in China. Using the annual maximum sampling method, rainstorm data of 607 cities throughout China were collected into a database, with a total of 24,933 rainfall samples (annual observations) under various specified precipitation durations. The database was used to verify that integrating the Pearson III and Gumbel distributions would constitute an optimal theoretical distribution type, owing to its small error and increased fitting precision. Modification and coordination of four important parameters in the rainstorm intensity formula were done using a digital elevation model, which improved the accuracy of the formula. In addition, precipitation distributions in China were treated from the perspective of topographic features to validate the calculations from up-to-date formulas. Accuracy assessment was accomplished using a national code (GB-50014-2006), GIS-based isograms, and authoritative results from the Hydrological Bureau of the Ministry of Water Resources. This work provides a comprehensive foundation for the establishment of an up-to-date rainstorm intensity formula for China, which can be used widely in different cities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号