首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   8篇
  国内免费   12篇
测绘学   8篇
大气科学   8篇
地球物理   65篇
地质学   141篇
海洋学   13篇
天文学   16篇
综合类   4篇
自然地理   14篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   5篇
  2019年   10篇
  2018年   20篇
  2017年   21篇
  2016年   26篇
  2015年   10篇
  2014年   15篇
  2013年   31篇
  2012年   19篇
  2011年   14篇
  2010年   9篇
  2009年   13篇
  2008年   7篇
  2007年   1篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   2篇
  1980年   1篇
  1977年   1篇
  1963年   1篇
  1960年   1篇
排序方式: 共有269条查询结果,搜索用时 31 毫秒
51.
Theoretical and Applied Climatology - Precise calculations for determining the water requirements of plants and the extent of evapotranspiration are crucial in determining the volume of water...  相似文献   
52.
The degradation of ground water quality due to human activities is a widespread environmental problem. Furthermore, coastal aquifers are threatened by sea water intrusion as a result of increasing water exploitation. The investigation area near Dörtyol is located at the Mediterranean coast, southern Turkey, and dominated by agricultural land use. Drinking, domestic and agricultural purposes require different amounts of uncontaminated water. In this study the hydrogeological characteristics of the coastal plain were investigated. Discharge and ground water level measurements as well as geological investigations were undertaken in field in addition to anion and cation analyses of ground and surface water. The results show geological and anthropogenic influence on ground and surface water composition. In spite of a large number of wells in the coastal area sea water intrusion was not detected. With the goal of devising sustainable water use regulations, more emphasis and research needs to be directed to the long-term observation of ground and surface water quality as well as the detailed investigation of hydraulic characteristics of the local aquifer.  相似文献   
53.
Al Jabal Al Akhdar is a NE/SW- to ENE/WSW-trending mobile part in Northern Cyrenaica province and is considered a large sedimentary belt in northeast Libya. Ras Al Hilal-Al Athrun area is situated in the northern part of this belt and is covered by Upper Cretaceous–Tertiary sedimentary successions with small outcrops of Quaternary deposits. Unmappable and very restricted thin layers of Palaeocene rocks are also encountered, but still under debate whether they are formed in situ or represent allochthonous remnants of Palaeocene age. The Upper Cretaceous rocks form low-lying to unmappable exposures and occupy the core of a major WSW-plunging anticline. To the west, south, and southeast, they are flanked by high-relief Eocene, Oligocene, and Lower Miocene rocks. Detailed structural analyses indicated structural inversion during Late Cretaceous–Miocene times in response to a right lateral compressional shear. The structural pattern is themed by the development of an E–W major shear zone that confines inside a system of wrench tectonics proceeded elsewhere by transpression. The deformation within this system revealed three phases of consistent ductile and brittle structures (D1, D2, and D3) conformable with three main tectonic stages during Late Cretaceous, Eocene, and Oligocene–Early Miocene times. Quaternary deposits, however, showed at a local scale some of brittle structures accommodated with such deformation and thus reflect the continuity of wrenching post-the Miocene. D1 deformation is manifested, in Late Cretaceous, via pure wrenching to convergent wrenching and formation of common E- to ENE-plunging folds. These folds are minor, tight, overturned, upright, and recumbent. They are accompanied with WNW–ESE to E–W dextral and N–S sinistral strike-slip faults, reverse to thrust faults and pop-up or flower structures. D2 deformation initiated at the end of Lutetian (Middle Eocene) by wrenching and elsewhere transpression then enhanced by the development of minor ENE–WSW to E–W asymmetric, close, and, rarely, recumbent folds as well as rejuvenation of the Late Cretaceous strike-slip faults and formation of minor NNW–SSE normal faults. At the end of Eocene, D2 led to localization of the movement within E–W major shear zone, formation of the early stage of the WSW-plunging Ras Al Hilal major anticline, preservation of the contemporaneity (at a major scale) between the synthetic WNW–ESE to E–W and ENE–WSW strike-slip faults and antithetic N–S strike-slip faults, and continuity of the NW–SE normal faults. D3 deformation is continued, during the Oligocene-Early Miocene, with the appearance of a spectacular feature of the major anticline and reactivation along the E–W shear zone and the preexisting faults. Estimating stress directions assumed an acted principal horizontal stress from the NNW (N33°W) direction.  相似文献   
54.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, M o, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Q c values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [ $ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $ ]. The average of Q c values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Q o values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001.  相似文献   
55.
In general, landslides in Malaysia mostly occurred during northeast and southwest periods, two monsoonal systems that bring heavy rain. As the consequence, most landslide occurrences were induced by rainfall. This paper reports the effect of monsoonal-related geospatial data in landslide hazard modeling in Cameron Highlands, Malaysia, using Geographic Information System (GIS). Land surface temperature (LST) data was selected as the monsoonal rainfall footprints on the land surface. Four LST maps were derived from Landsat 7 thermal band acquired at peaks of dry and rainy seasons in 2001. The landslide factors chosen from topography map were slope, slope aspect, curvature, elevation, land use, proximity to road, and river/lake; while from geology map were lithology and proximity to lineament. Landslide characteristics were extracted by crossing between the landslide sites of Cameron Highlands and landslide factors. Using which, the weighting system was derived. Each landslide factors were divided into five subcategories. The highest weight values were assigned to those having the highest number of landslide occurrences. Weighted overlay was used as GIS operator to generate landslide hazard maps. GIS analysis was performed in two modes: (1) static mode, using all factors except LST data; (2) dynamic mode, using all factors including multi-temporal LST data. The effect of addition of LST maps was evaluated. The final landslide hazard maps were divided into five categories: very high risk, high risk, moderate, low risk, and very low risk. From verification process using landslide map, the landslide model can predict back about 13–16% very high risk sites and 70–93% of very high risk and high risk combined together. It was observed however that inclusion of LST maps does not necessarily increase the accuracy of the landslide model to predict landslide sites.  相似文献   
56.
The radiometric responses of the Gebel (G., which means mountain in Arabic) Meatiq area display the overall high radiation of the high grade metamorphic Um Ba’anib granite gneiss, metasediments, as well as Arieki adamellite rocks. Whereas, the low grade metamorphic ophiolitic nappes country reveal the lowest radiometric response. The eU, eTh, and K contents tend to increase with the youthfulness of the plutons with a maximum amounts in the more alkali varieties, e.g., Arieki adamellite (580 Ma), then the high grade metamorphic rocks of the younger Meatiqian orogeny (626?±?2 Ma). Also, these rocks reveal that the major radiometric anomaly with exposure rates ≈139 nGy/h, more than double of the global terrestrial values. While, the low grade metamorphic ophiolitic rocks reveal the lowest average exposure rates ≈46.8 nGy/h. The areas of high gamma ray values of F-parameter of Efimov (K × U/Th), ternary composite map, K map, K/eTh, and K/eU ratios maps are related to K enrichment conditions during formation (diagenesis) or deformation of the high grade metamorphic rocks and the Arieki adamellite intrusion. From the geochemical point of view, these areas are associated with rocks that are characterized by high-K calc-alkaline, calc-alkaline affinity, and enriched in REE.  相似文献   
57.
Information and communication technology, which has been incorporated and provided in the Geographic Information System (GIS), is valuable and effective geospatial information for the decision makers in improving their decisions in planning and development. The integration of this GIS using the multicriteria decision analysis approach provides an environment to the decision makers in citing areas using land suitability analysis procedures. This review paper particularly examines the GIS-based analytic hierarchy process as a multicriteria analysis/evaluation technique in land suitability analysis by means of literature reviews and surveys.  相似文献   
58.
In this work, the X-ray Photoelectron Spectroscopy (XPS) technique is utilized to analyze the surface chemical composition of particulate matter (PM) which was collected from various locations at Jeddah, Saudi Arabia. The main elements found on the surface of PM are carbon (C), oxygen (O) and silicon (Si) with combined percentage of 89.4–94.9 while traces of nitrogen (N), calcium (Ca), aluminum (Al), sodium (Na), chlorine (Cl), manganese (Mg), and sulfur (S) were also present. The analyzed XPS chemical state of C, O and Si was further used to determine their bonding with other elements occurring over the surface of PM. Carbon was found in the form of carbides (18.86%), fluorides (2.39%) and carbonates (78.75%); oxygen was observed as oxides (21.05%) and hydroxides (73.42%) of other metals; and silicon was detected as silicones (12.16%), nitrides (82.53%) and silicates (5.25%). The particle size of a PM is also of great concern for health issues, and thus has been investigated by the Field Emission Scanning Electron Microscope (FESEM). The Energy Dispersive X-ray Spectroscopy (EDS) was employed for cross verification of detected elements by XPS.  相似文献   
59.
Uranium mineralization in the El Erediya area, Egyptian Eastern Desert, has been affected by both high temperature and low temperature fluids. Mineralization is structurally controlled and is associated with jasperoid veins that are hosted by a granitic pluton. This granite exhibits extensive alteration, including silicification, argillization, sericitization, chloritization, carbonatization, and hematization. The primary uranium mineral is pitchblende, whereas uranpyrochlore, uranophane, kasolite, and an unidentified hydrated uranium niobate mineral are the most abundant secondary uranium minerals. Uranpyrochlore and the unidentified hydrated uranium niobate mineral are interpreted as alteration products of petscheckite. The chemical formula of the uranpyrochlore based upon the Electron Probe Micro Analyzer (EPMA) is . It is characterized by a relatively high Zr content (average ZrO2 = 6.6 wt%). The average composition of the unidentified hydrated uranium niobate mineral is , where U and Nb represent the dominant cations in the U and Nb site, respectively. Uranophane is the dominant U6+ silicate phase in oxidized zones of the jasperoid veins. Kasolite is less abundant than uranophane and contains major U, Pb, and Si but only minor Ca, Fe, P, and Zr. A two-stage metallogenetic model is proposed for the alteration processes and uranium mineralization at El Erediya. The primary uranium minerals were formed during the first stage of the hydrothermal activity that formed jasperoid veins in El Eradiya granite (130–160 Ma). This stage is related to the Late Jurassic–Early Cretaceous phase of the final Pan-African tectono-thermal event in Egypt. After initial formation of El Erediya jasperoid veins, a late stage of hydrothermal alteration includes argillization, dissolution of iron-bearing sulfide minerals, formation of iron-oxy hydroxides, and corrosion of primary uranium minerals, resulting in enrichment of U, Ca, Pb, Zr, and Si. During this stage, petscheckite was altered to uranpyrochlore and oxy-petscheckite. Uranium was likely transported as uranyl carbonate and uranyl fluoride complexes. With change of temperature and pH, these complexes became unstable and combined with silica, calcium, and lead to form uranophane and kasolite. Finally, at a later stage of low-temperature supergene alteration, oxy-petscheckite was altered to an unidentified hydrated uranium niobate mineral by removal of Fe.  相似文献   
60.
It is demonstrated that single titanium dioxide (TiO2) has high potential for photodegradation of pollutants. However, it is still far from becoming an effective photocatalyst system, due to issues of adsorption process, separation, as well as dissolution. Therefore, this study highlights the high adsorption capacity, simplified separation, and the promising stability of TiO2(SY) (synthesized via sol–gel method) photocatalyst, fabricated using chitosan–TiO2(SY) and supported by glass substrate (Cs–TiO2(SY)/glass substrate) photocatalysts. Chitosan (Cs), with abundant –R–NH and NH2 groups, promotes the adsorption sites of methyl orange (MO) and OH groups for major attachment to TiO2(SY). Meanwhile, the glass substrate increases stability and assists separation of the photocatalysts. Initially, nano-TiO2(SY) has been characterized using high-resolution transmission electron microscope. Cs–TiO2(SY)/glass substrate was fabricated via dip-coating. The distribution and interface between the photocatalytic components were characterized by Fourier transform infrared absorption spectroscopy, UV–Vis diffuse reflectance spectroscopy, field emission scanning electron microscopy, and energy-dispersive spectrometer. UV–Vis analysis of the multilayer photocatalyst (2, 4, 6, and 8 layers) was further carried out by the adsorption–photodegradation, with MO as model of pollutant. Seventy percent of the total removal of MO via optimized eight layers of photocatalyst was achieved within 1 h of UV irradiation. The adsorption photocatalyst achieved 50 % with no exposure to UV light for 15 min of irradiation. It is concluded that suitable photocatalytic conditions and sample parameters possessing the multilayer photocatalyst of Cs–TiO2(SY) are beneficial toward the adsorption–photodegradation process in wastewater treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号