首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8185篇
  免费   1702篇
  国内免费   2420篇
测绘学   860篇
大气科学   1418篇
地球物理   1703篇
地质学   4569篇
海洋学   1468篇
天文学   247篇
综合类   882篇
自然地理   1160篇
  2024年   76篇
  2023年   254篇
  2022年   415篇
  2021年   532篇
  2020年   443篇
  2019年   489篇
  2018年   570篇
  2017年   502篇
  2016年   532篇
  2015年   473篇
  2014年   597篇
  2013年   576篇
  2012年   548篇
  2011年   566篇
  2010年   547篇
  2009年   540篇
  2008年   465篇
  2007年   474篇
  2006年   421篇
  2005年   362篇
  2004年   270篇
  2003年   269篇
  2002年   256篇
  2001年   291篇
  2000年   267篇
  1999年   289篇
  1998年   178篇
  1997年   186篇
  1996年   159篇
  1995年   123篇
  1994年   136篇
  1993年   114篇
  1992年   77篇
  1991年   66篇
  1990年   38篇
  1989年   26篇
  1988年   38篇
  1987年   26篇
  1986年   29篇
  1985年   14篇
  1984年   13篇
  1983年   8篇
  1982年   13篇
  1981年   8篇
  1980年   6篇
  1979年   8篇
  1978年   3篇
  1976年   4篇
  1958年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
221.
Land degradation imposes a great threat to the world. It is not merely an environmental issue, but also a social and economic problem. Land desertification is among the main aspects of environment changes in the source region of the Yellow River. Previous studies focused on water resource utilization and soil erosion, but land degradation in the source region of the Yellow River even the whole Qinghai-Xizang Plateau received little attention. Based on the data obtained by field investigation and TM satellite images of 2000, this study provides the classification and evaluation information of the land degradation in the source region of the Yellow River. There are six types of land degradation in this region: water erosion in the northern mountains around the Gonghe Basin, sandy desertification in the Gonghe Basin and Upland Plain Area, aridization in the lower reaches, salinization in the Gonghe Basin, vegetation degradation in the intramontance basin and freezing and thawing erosion in the high mountains. The total degraded area is 34,429.6 km2, making up 37.5% of the land in the study area. Finally, land degradation in the source region of the Yellow River was evaluated according to changes in the physical structure and chemical component of soils, land productivity, secondary soil salt and water conditions.  相似文献   
222.
The Zhangye Region of Gansu Province is an important agricultural base in arid northwestern China. During the twentieth century, especially in the last five decades, the region has experienced sandy desertification. To document the status and causes of this deterioration, satellite images, meteorological and socioeconomic data to assess landscape change from 1993 to 2002 were interpreted and analyzed. The results show that during the intervening 9-year period the area of sandy lands has increased by 642.2 km2, which consist of aeolian sand dune (357.1 km2) and potential sandy land (216.3 km2). Although the development and reversion of sandy desertification co-exist, the sandy desertification in this area seems serious and is attributable to the irrational use of water and land.  相似文献   
223.
不同浓度的Na2SO4水溶液的拉曼光谱显示了SO42-的四个拉曼活性带:980 cm-1处的SO42-的对称伸缩振动模式v1带,1 106 cm-1处的反对称伸缩振动模式v3带,448 cm-1处的变形振动模式v2带和617 cm-1处的变形振动模式v4带。482 cm-1处的肩膀峰是由于NaSO4-离子对的形成对448 cm-1的v2带的影响而形成的SO42-的一个新的振动峰。浓Na2SO4水溶液中,水共享离子对[Na+.H2O.SO42-]-是主要的离子对物种。随着Na2SO4水溶液浓度的增加,Na+和SO42-的相互作用增强,NaSO4-离子对所占的摩尔分数增加。  相似文献   
224.
Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these responses can provide a scientific basis for improving ecological conservation. This study took one site for each of three grassland types (alpine meadow, alpine steppe and alpine desert) on the northern Tibetan Plateau as examples, and explored the effects of enclosure on plant and soil nutrients by comparing differences in plant community biomass, leaf-soil nutrient content and their stoichiometry between samples from inside and outside the fence. The results showed that enclosure can significantly increase all aboveground biomass in these three grassland types, but it only increased the 10-20 cm underground biomass in the alpine desert. Enclosure also significantly increased the leaf nutrient content of the dominant plants and contents of total nitrogen (N), total potassium (K), and organic carbon (C) in 10-20 cm soil in alpine desert, thus changing the stoichiometry between C, N and P (phosphorus). However, enclosure significantly increased only the N content of dominant plant leaves in alpine steppe, while other nutrients and stoichiometries of both plant leaves and soil did not show significant differences in alpine meadow and alpine steppe. These results suggested that enclosure has differential effects on these three types of alpine grasslands on the northern Tibetan Plateau, and the alpine desert showed the most active ecological conservation in the responses of its soil and plant nutrients.  相似文献   
225.
226.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
227.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
228.
An exact steady‐state closed‐form solution is presented for coupled flow and deformation of an axisymmetric isotropic homogeneous fluid‐saturated poroelastic layer with a finite radius due to a point sink. The hydromechanical behavior of the poroelastic layer is governed by Biot's consolidation theory. Boundary conditions on the lateral surface are specifically chosen to match the appropriate finite Hankel transforms and simplify the transforms of the governing equations. Ordinary differential equations in the transformed domain are solved, and then the analytical solutions in the physical space for the pore pressure and the displacements are finally obtained by using finite Hankel inversions. The analytical solutions at some special locations such as the top and bottom surfaces, lateral surface, and the symmetrical axis are given and analyzed. And a case study for the consolidation of a water‐saturated soft clay layer due to pumping is conducted. The analytical solution is verified against the finite element solution. Meanwhile, an analysis of coupled hydromechanical behavior is carried out herein. The presented analytical solution is an exact solution to the practical poroelastic problem within an axisymmetric finite layer. It can provide us a better understanding of the poroelastic behavior of the finite layer due to fluid extraction. Besides, it can be applied to calibrate numerical schemes of axisymmetric poroelasticity within finite domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
229.
Natural ecosystems in the region of the lower Tarim River in northwestern China strongly deteriorated since the 1950s due to an expanding desertification. As a result, the downstream Tarim River reaches became permanently dry land. This historical evolution in land‐use change is typically the result of the anthropogenic impact on natural ecosystems. On the basis of a spatially distributed hydrological catchment model bidirectionally linked with a fully hydrodynamic MIKE11 river model, land‐use changes characterized by historical changes in leaf area index (LAI) of vegetation, as well as the evolution of irrigated surface areas, can be causally related to changes in water resources (groundwater storage and surface water resources). An increased surface area of irrigated (agricultural) land, together with a majority of inefficient irrigation methods, did lead to a strong increase of water resources consumption of the farmlands located in the upper Tarim River area. Evidently, this evolution influenced available water resources downstream in the Tarim basin. As a result, farmland has been gradually relocated to the upstream regions. This has led to reduced flows from the upper Tarim stream, which subsequently accelerated the dropping of the groundwater level downstream in the basin. This study moreover demonstrates that land surface biomass changes (cumulative LAI) along the lower Tarim River are strongly related to the changes in groundwater storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
230.
双线道路识别与提取是城市路网综合的关键。提出了一种城市双线道路提取的方法。在构建好的道路网眼的基础上,综合考虑双线道路网眼形态特征以及构成网眼路段之间的语义相似度,设计了识别双线道路网眼的综合指标。通过判断网眼综合指标确定最终的双线道路网眼,最后根据识别出的双线道路网眼提取出双线道路。实验表明,该方法能有效提取出城市道路数据中的双线道路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号