首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5816篇
  免费   227篇
  国内免费   89篇
测绘学   174篇
大气科学   551篇
地球物理   1456篇
地质学   2021篇
海洋学   551篇
天文学   758篇
综合类   22篇
自然地理   599篇
  2021年   62篇
  2020年   64篇
  2019年   88篇
  2018年   126篇
  2017年   118篇
  2016年   160篇
  2015年   147篇
  2014年   203篇
  2013年   330篇
  2012年   244篇
  2011年   265篇
  2010年   192篇
  2009年   308篇
  2008年   287篇
  2007年   265篇
  2006年   221篇
  2005年   188篇
  2004年   199篇
  2003年   191篇
  2002年   182篇
  2001年   136篇
  2000年   137篇
  1999年   114篇
  1998年   110篇
  1997年   92篇
  1996年   85篇
  1995年   85篇
  1994年   75篇
  1993年   63篇
  1992年   66篇
  1991年   69篇
  1990年   66篇
  1989年   60篇
  1988年   58篇
  1987年   66篇
  1986年   44篇
  1985年   73篇
  1984年   80篇
  1983年   72篇
  1982年   65篇
  1981年   76篇
  1980年   63篇
  1979年   57篇
  1978年   38篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6132条查询结果,搜索用时 0 毫秒
871.
Abstract— Intense magnetic anomalies over Martian surface suggest preservation of large volumes of very old crust (>3 Gyr) that formed in the presence of a global magnetic field. The global distribution of the magnetic intensities observed above the Martian crust suggests a division into three zones. Zone 1 is where the magnetic signature is negligible or of relatively low intensity at Mars Global Surveyor (MGS) satellite mapping altitude (400 km). Zone 2 is the region of intermediate crustal magnetic amplitudes and zone 3 is where the highest magnetic intensities are measured. Crater demagnetization near zone 3 reveals the presence of rocks with both high magnetic intensity and coercivity. Magnetic analyses of terrestrial rocks show that compositional banding in orogenic zones significantly enhances both magnetic coercivity and thermal remanent magnetization (TRM) efficiency. Such enhancement offers a novel explanation for the anomalously large intensities inferred of magnetic sources on Mars. We propose that both large magnetic coercivity and intensity near the South Pole is indicative of the presence of a large degree of deformation. Associated compositional zoning creates conditions for large scale magnetic anisotropy allowing magnetic minerals to acquire magnetization more efficiently, thereby causing the distinct magnetic signatures in zone 3, expressed by intense magnetic anomalies. We use a simple model to verify the magnetic enhancement. We hypothesize that magnetically enhanced zone would reside over the down welling plume at the time of magnetization acquisition.  相似文献   
872.
Moisture in stone material is the key factor for all stone deterioration processes and also in weathering of cultural heritage. With additional presence of salts in the material the situation gets even more critical. While the properties of pure salts with moisture are well known, knowledge about the interaction of salt mixtures with moisture is still poor. In different approaches the reactions of salt-contaminated stone material on changing moisture were tested in the laboratory. Experiments with different solutions in the Na-Mg-SO4-NO3-H2O system revealed interesting new results on the moisture behaviour of salt-contaminated samples. Theoretical considerations and computer simulations are helpful to interpret the data obtained, but are not yet sufficient to explain the real processes acting on site at the monuments. More encouraging to this fact are complementary studies on visible efflorescences in the same salt system. It is shown how by experimental approaches the understanding on salt-induced stone deterioration is strongly complemented.  相似文献   
873.
The aim of this study is to recognize the basic clastic rock types on the basis of Hounsfield Units (HUs) by using statistical methods (hypothesis tests, distribution fitting, and confidence intervals). How does this recognition depend on depositional history of samples tested? Does the numerical pattern of HUs obtained from small-scale analyzing of some particular sedimentary structures coincide to the textural expectations of those sedimentary structures? Are the HU values provided by the CT measurements capable of evidencing micro-cycles belonging to a particular depositional history?For testing the numerical recognition, we analyze macroscopically homogeneous argillaceous marl, siltstone and fine sandstone samples with similar depositional background, age, and degree of diagenesis. The preliminary research shows that the Hounsfield Units can identify different sedimentary rocks considerably well. There are significant differences among the confidence intervals belonging to the different rock types. However, there also have been some slight overlaps among them.For analyzing the effects of the depositional processes in case of a particular rock type, samples from channel sandstone, distributary mouth-bar, massive (structureless) sandstone from a delta-fed turbidity fan, and channel sandstone with traction carpet origin from a delta-fed turbidity fan (all coming from Pannonian basin filling series) are used. The results prove again the significant differences in the terms of both confidence intervals and distribution-types; however, some overlapping also occurs.  相似文献   
874.
Oxygen and hydrogen isotope fractionation factors in the talc-water and serpentine-water systems have been determined by laboratory experiment from 250 to 450 °C at 50 MPa using the partial exchange technique. Talc was synthesized from brucite + quartz, resulting in nearly 100% exchange during reaction at 350 and 450 °C. For serpentine, D-H exchange was much more rapid than 18O-16O exchange when natural chrysotile fibers were employed in the initial charge. In experiments with lizardite as the starting charge, recrystallization to chrysotile enhanced the rate of 18O-16O exchange with the coexisting aqueous phase. Oxygen isotope fractionation factors in both the talc-water and serpentine-water systems decrease with increasing temperature and can be described from 250 to 450 °C by the relationships: 1000 ln  = 11.70 × 106/T2 − 25.49 × 103/T + 12.48 and 1000 ln  = 3.49 × 106/T2 − 9.48 where T is temperature in Kelvin. Over the same temperature interval at 50 MPa, talc-water D-H fractionation is only weakly dependent on temperature, similar to brucite and chlorite, and can be described by the equation: 1000 ln = 10.88 × 106/T2 − 41.52 × 103/T + 5.61 where T is temperature in Kelvin. Our D-H serpentine-water fractionation factors calibrated by experiment decrease with temperature and form a consistent trend with fractionation factors derived from lower temperature field calibrations. By regression of these data, we have refined and extended the D-H fractionation curve from 25 to 450 °C, 50 MPa as follows: 1000 ln  = 3.436 × 106/T2 − 34.736 × 103/T + 21.67 where T is temperature in Kelvin. These new data should improve the application of D-H and 18O-16O isotopes to constrain the temperature and origin of hydrothermal fluids responsible for serpentine formation in a variety of geologic settings.  相似文献   
875.
Carbon isotopic exchange between graphite and three polymorphs of CaCO3 was investigated at temperatures of 600-1400 °C and at pressures from 1.4 to 2.3 GPa. Fractionation factors at all temperatures were determined by the partial exchange treatment of Northrop and Clayton (1966).Graphite starting material for the majority of the experiments was milled in water for 20-25 h, producing aggregates of nanosheets. The sheets range in width from 50 to 1000 nm and in thickness from 20 to 30 nm, and they retain hexagonal symmetry.Isotopic exchange appears to be the sum of surface exchange and interior exchange. At 1100-1400 °C, interior exchange exceeded surface exchange, probably by a combination of grain growth, as determined by increase in crystallite size, recrystallization, as observed in FESEM images, and diffusion. In some runs at 1200 and 1400 °C with an isotopic contrast between the initial graphite and calcite of close to 50‰, equilibrium fractionation was actually overstepped due to a kinetic effect. A weighted regression of fractionation factors from the high-temperature runs yields the line of equilibrium interior exchange:
  相似文献   
876.

Discussion

Paleoproterozoic Boninite-Like Rocks in an Intracratonic Setting from Northern Bastar Craton, Central India by D.V. Subba Rao, V. Balaram, K. Naga Raju and D.N. Sridhar. Jour. Geol. Soc. India, v.72, 2008, pp.373–380  相似文献   
877.
878.
At least three sets of moraines mark distinct glacial stands since the last glacial maximum (LGM) in the Three Sisters region of the Oregon Cascade Range. The oldest stand predates 8.1 ka (defined here as post-LGM), followed by a second between ∼ 2 and 8 ka (Neoglacial) and a third from the Little Ice Age (LIA) advance of the last 300 years. The post-LGM equilibrium line altitudes were 260 ± 100 m lower than that of modern glaciers, requiring 23 ± 9% increased winter snowfall and 1.4 ± 0.5°C cooler summer temperatures than at present. The LIA advance had equilibrium line altitudes 110 ± 40 m lower than at present, implying 10 ± 4% greater winter snowfall and 0.6 ± 0.2°C cooler summer temperatures.  相似文献   
879.
Two hypotheses have been proposed to explain the origin of marine isotope stage (MIS) 11 deposits in small Bermudian caves at +21 m above modern sea level: (1) a +21 m MIS 11 eustatic sea-level highstand, and (2) a MIS 11 mega-tsunami event. Importantly, the foraminifera reported in these caves have yet to be critically evaluated within a framework of coastal cave environments. After statistically comparing foraminifera in modern Bermudian littoral caves and the MIS 11 Calonectris Pocket A (+21 m cave) to the largest available database of Bermudian coastal foraminifera, the assemblages found in modern littoral caves – and Calonectris Pocket A – cannot be statistically differentiated from lagoons. This observation is expected considering littoral caves are simply sheltered extensions of a lagoon environment in the littoral zone, where typical coastal processes (waves, storms) homogenize and rework lagoonal, reefal, and occasional planktic taxa. Fossil protoconchs of the Bermudian cave stygobite Caecum caverna were also associated with the foraminifera. These results indicate that the MIS 11 Bermudian caves are fossil littoral caves (breached flank margin caves), where the total MIS 11 microfossil assemblage is preserving a signature of coeval sea level at +21 m. Brackish foraminifera (Polysaccammina, Pseudothurammina) and anchialine gastropods (95%, >300 individuals) indicate a brackish anchialine habitat developed in the elevated caves after the prolonged littoral environmental phase. The onset of sea-level regression following the +21 m highstand would first lower the ancient brackish Ghyben-Herzberg lens (<0.5 m) and flood the cave with brackish water, followed by drainage of the cave to create a permanent vadose environment. These interpretations of the MIS 11 microfossils (considering both taphonomy and paleoecology) are congruent with the micropaleontological, hydrogeological and physical mechanisms influencing modern Bermudian coastal cave environments. In conclusion, we reject the mega-tsunami hypothesis, concur with the +21 m MIS 11 eustatic sea-level hypothesis, and reiterate the need to resolve the disparity between global marine isotopic records and the physical geologic evidence for sea level during MIS 11.  相似文献   
880.
Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the precursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active-region’s magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca ii H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ≈ 8° toward the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ≈ 7°. This behavior of the field vector may provide a physical basis for future flare-forecasting efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号