首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34584篇
  免费   2391篇
  国内免费   3959篇
测绘学   2470篇
大气科学   3615篇
地球物理   6900篇
地质学   17298篇
海洋学   2912篇
天文学   2117篇
综合类   3209篇
自然地理   2413篇
  2024年   115篇
  2023年   320篇
  2022年   681篇
  2021年   765篇
  2020年   667篇
  2019年   690篇
  2018年   5397篇
  2017年   4605篇
  2016年   3258篇
  2015年   884篇
  2014年   830篇
  2013年   772篇
  2012年   1786篇
  2011年   3438篇
  2010年   2705篇
  2009年   2917篇
  2008年   2381篇
  2007年   2853篇
  2006年   552篇
  2005年   590篇
  2004年   672篇
  2003年   667篇
  2002年   470篇
  2001年   275篇
  2000年   318篇
  1999年   386篇
  1998年   270篇
  1997年   278篇
  1996年   209篇
  1995年   200篇
  1994年   177篇
  1993年   170篇
  1992年   124篇
  1991年   92篇
  1990年   79篇
  1989年   68篇
  1988年   38篇
  1987年   37篇
  1986年   34篇
  1985年   28篇
  1984年   12篇
  1983年   20篇
  1982年   14篇
  1981年   31篇
  1980年   28篇
  1979年   8篇
  1978年   4篇
  1976年   6篇
  1958年   5篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
二叠-三叠纪之交华南地区普遍发育火山成因的粘土岩,其对于了解二叠纪末大规模火山活动及扬子板块碎屑物质来源具有重要意义。本文对扬子西缘马角坝刺林包剖面飞仙关组底部粘土岩进行了碎屑锆石U-Pb定年及原位Hf同位素测试、X衍射和全岩地球化学分析,以揭示粘土岩的岩石成分及物源信息。镜下特征、X衍射及主量元素特征表明岩石中粘土矿物主要为伊利石,含少量方解石、石英。碎屑锆石年龄显示,特征峰值年龄主要集中在2 615~2 383、1 868~1 328、1 186~778和430~246 Ma,并出现~250 Ma特征高峰,结合原位Hf同位素特征表明锆石与秦岭造山带、华南典型PTB剖面粘土岩及峨眉山大火成岩省具有较高的相似性。同时,通过微量、稀土元素分析发现粘土岩中Zr、Hf、Th、Cr、Co、Ti相对富集,与华南典型PTB粘土岩和峨眉山玄武岩相近,并结合构造背景及锆石特征,综合认为刺林包剖面PTB粘土岩来自于秦岭造山带及龙门山岛链局部剥蚀区、二叠纪末火山活动和峨眉山大火成岩省剥蚀岩体。  相似文献   
992.
近几年,随着四川盆地海相碳酸盐岩储层勘探的不断加强,碳酸盐岩储层强的非均质性已成为制约礁滩气藏勘探开发的现实问题。以川东宣汉盘龙洞长兴组典型台缘礁滩剖面为研究对象,通过对典型台缘礁滩野外剖面的精细观察,结合镜下薄片及岩矿资料分析,重点探讨了盘龙洞礁滩储层纵向非均质性特征及成因。剖面上礁滩体垂向上存在很强的旋回性和储层非均质性,其储集岩分布、储层厚度、白云岩化程度、溶蚀作用等受海平面周期性的升降变化影响而呈现周期性变化。礁滩储层非均质性受高能相带、海平面升降变化和建设性成岩作用的共同控制,高能相带控制储层原生孔隙的发育,决定了储层的沉积非均质性,白云岩化和溶蚀作用有利于礁滩体储层的形成,大气淡水淋滤改造对于优化储层具有关键作用,海平面升降变化决定了礁滩体旋回性发育,而建设性成岩作用的选择性改造深化了储层非均质性。  相似文献   
993.
We study the fragmentation properties in the protoplanetary disk and properties of the resultant self-gravitating clumps using our newly constructed disk model. Our disk model includes the mass inflall term from a molecular cloud core and the photoevaporation winds effect. We adopt the conventional fragmentation criterion to judge whether a protoplanetary disk can fragment. In this work, we follow our previous work to investigate the properties of the resultant self-gravitating clumps. In our calculation, the initial masses of the resultant self-gravitating clumps lie in the range of tens of MJ to more than one hundred of MJ, where MJ is the Jupiter mass. These initial masses can seemingly account for the masses of extrasolar planets in magnitude. We also calculate the subsequent gas accretion of clumps in 1.27 × 104 yr after the formation of self-gravitating clumps. We find that the subsequent gas accretion of self-gravitating clumps is very efficient, and the clump masses grow to hundreds of MJ and the physical radii Rc of clumps increase to about 10 AU. Additionally, we also calculate the orbital migration of clumps. We find that most clumps have short migration timescale to be accreted onto the protostar, and only a small fraction of clumps have long migration timescale (>106 yr) to successfully become gas giant planets. These results are consistent with previous studies.  相似文献   
994.
Hydrocarbon reservoir modelling and characterisation is a challenging subject within the oil and gas industry due to the lack of well data and the natural heterogeneities of the Earth’s subsurface. Integrating historical production data into the geo-modelling workflow, commonly designated by history matching, allows better reservoir characterisation and the possibility of predicting the reservoir behaviour. We present herein a geostatistical-based multi-objective history matching methodology. It starts with the generation of an initial ensemble of the subsurface petrophysical property of interest through stochastic sequential simulation. Each model is then ranked according the match between its dynamic response, after fluid flow simulation, and the observed available historical production data. This enables building regionalised Pareto fronts and the definition of a large ensemble of optimal subsurface Earth models that fit all the observed production data without compromising the exploration of the uncertainty space. The proposed geostatistical multi-objective history matching technique is successfully implemented in a benchmark synthetic reservoir dataset, the PUNQ-S3, where 12 objectives are targeted.  相似文献   
995.
This paper presents a novel mass-conservative mixed multiscale method for solving flow equations in heterogeneous porous media. The media properties (the permeability) contain multiple scales and high contrast. The proposed method solves the flow equation in a mixed formulation on a coarse grid by constructing multiscale basis functions. The resulting velocity field is mass-conservative on the fine grid. Our main goal is to obtain first-order convergence in terms of the mesh size which is independent of local contrast. This is achieved, first, by constructing some auxiliary spaces, which contain global information that cannot be localized, in general. This is built on our previous work on the generalized multiscale finite element method (GMsFEM). In the auxiliary space, multiscale basis functions corresponding to small (contrast-dependent) eigenvalues are selected. These basis functions represent the high-conductivity channels (which connect the boundaries of a coarse block). Next, we solve local problems to construct multiscale basis functions for the velocity field. These local problems are formulated in the oversampled domain, taking into account some constraints with respect to auxiliary spaces. The latter allows fast spatial decay of local solutions and, thus, allows taking smaller oversampled regions. The number of basis functions depends on small eigenvalues of the local spectral problems. Moreover, multiscale pressure basis functions are needed in constructing the velocity space. Our multiscale spaces have a minimal dimension, which is needed to avoid contrast dependence in the convergence. The method’s convergence requires an oversampling of several layers. We present an analysis of our approach. Our numerical results confirm that the convergence rate is first order with respect to the mesh size and independent of the contrast.  相似文献   
996.
Grid generation for reservoir simulation must honor classical key constraints and be boundary aligned such that control-volume boundaries are aligned with geological features such as layers, shale barriers, fractures, faults, pinch-outs, and multilateral wells. An unstructured grid generation procedure is proposed that automates control-volume and/or control point boundary alignment and yields a PEBI-mesh both with respect to primal and dual (essentially PEBI) cells. In order to honor geological features in the primal configuration, we introduce the idea of protection circles, and to generate a dual-cell feature based grid, we construct halos around key geological features. The grids generated are employed to study comparative performance of cell-centred versus cell-vertex control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulations using equivalent degrees of freedom. The formulation of CVD-MPFA schemes in cell-centred and cell-vertex modes is analogous and requires switching control volume from primal to dual or vice versa together with appropriate data structures and boundary conditions. The relative benefits of both types of approximation, i.e., cell-centred versus vertex-centred, are made clear in terms of flow resolution and degrees of freedom required.  相似文献   
997.
In the development of naturally fractured reservoirs (NFRs), the existence of natural fractures induces severe fingering and breakthrough. To manage the flooding process and improve the ultimate recovery, we propose a numerical workflow to generate optimal production schedules for smart wells, in which the inflow control valve (ICV) settings can be controlled individually. To properly consider the uncertainty introduced by randomly distributed natural fractures, the robust optimization would require a large ensemble size and it would be computationally demanding. In this work, a hierarchical clustering method is proposed to select representative models for the robust optimization in order to avoid redundant simulation runs and improve the efficiency of the robust optimization. By reducing the full ensemble of models into a small subset ensemble, the efficiency of the robust optimization algorithm is significantly improved. The robust optimization is performed using the StoSAG scheme to find the optimal well controls that maximize the net-present-value (NPV) of the NFR’s development. Due to the discrete property of a natural fracture field, traditional feature extraction methods such as model-parameter-based clustering may not be directly applicable. Therefore, two different kinds of clustering-based optimization methods, a state-based (e.g., s w profiles) clustering and a response-based (e.g., production rates) clustering, are proposed and compared. The computational results show that the robust clustering optimization could increase the computational efficiency significantly without sacrificing much expected NPV of the robust optimization. Moreover, the performance of different clustering algorithms varies widely in correspondence to different selections of clustering features. By properly extracting model features, the clustered subset could adequately represent the uncertainty of the full ensemble.  相似文献   
998.
999.
Numerical representations of a target reservoir can help to assess the potential of different development plans. To be as predictive as possible, these representations or models must reproduce the data (static, dynamic) collected on the field. However, constraining reservoir models to dynamic data – the history-matching process – can be very time consuming. Many uncertain parameters need to be taken into account, such as the spatial distribution of petrophysical properties. This distribution is mostly unknown and usually represented by millions of values populating the reservoir grid. Dedicated parameterization techniques make it possible to investigate many spatial distributions from a small number of parameters. The efficiency of the matching process can be improved from the perturbation of specific regions of the reservoir. Distinct approaches can be considered to define such regions. For instance, one can refer to streamlines. The leading idea is to identify areas that influence the production behavior where the data are poorly reproduced. Here, we propose alternative methods based on connectivity analysis to easily provide approximate influence areas for any fluid-flow simulation. The reservoir is viewed as a set of nodes connected by weighted links that characterize the distance between two nodes. The path between nodes (or grid blocks) with the lowest cumulative weight yields an approximate flow path used to define influence areas. The potential of the approach is demonstrated on the basis of 2D synthetic cases for the joint integration of production and 4D saturation data, considering several formulations for the weights attributed to the links.  相似文献   
1000.
The Caohai Wetland serves as an important ecosystem on the Yunnan–Guizhou Plateau and as a nationally important nature reserve for migratory birds in China. In this study, surface water, groundwater and wetland water were collected for the measurement of environmental isotopes to reveal the seasonal variability of oxygen and hydrogen isotopes (δ18O, δD), sources of water, and groundwater inflow fluxes. Results showed that surface water and groundwater are of meteoric origin. The isotopes in samples of wetland water were well mixed vertically in seasons of both high-flow (September) and low-flow (April); however, marked seasonal and spatial variations were observed. During the high-flow season, the isotopic composition in surface wetland water varied from ?97.13 to ?41.73‰ for δD and from ?13.17 to ?4.70‰ for δ18O. The composition of stable isotopes in the eastern region of this wetland was lower than in the western region. These may have been influenced by uneven evaporation caused by the distribution of aquatic vegetation. During the low-flow season, δD and δ18O in the more open water with dead aquatic vegetation ranged from ?37.11 to ?11.77‰, and from ?4.25 to ?0.08‰, respectively. This may result from high evaporation rates in this season with the lowest atmospheric humidity. Groundwater fluxes were calculated by mass transfer and isotope mass balance approaches, suggesting that the water sources of the Caohai Wetland were mainly from groundwater in the high-flow season, while the groundwater has a smaller contribution to wetland water during the low-flow season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号