首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   16篇
  国内免费   6篇
测绘学   13篇
大气科学   18篇
地球物理   92篇
地质学   126篇
海洋学   35篇
天文学   22篇
综合类   8篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   15篇
  2020年   9篇
  2019年   12篇
  2018年   20篇
  2017年   12篇
  2016年   14篇
  2015年   17篇
  2014年   9篇
  2013年   15篇
  2012年   21篇
  2011年   23篇
  2010年   27篇
  2009年   15篇
  2008年   19篇
  2007年   14篇
  2006年   13篇
  2005年   15篇
  2004年   9篇
  2003年   12篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   6篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有319条查询结果,搜索用时 959 毫秒
201.
202.
The aim of this work is to study the effects of a wildfire on water‐extractable elements in ash from a Pinus pinaster forest located in Portugal. The pH, electrical conductivity (EC), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), sodium and potassium adsorption ratio (SPAR), aluminium (Al3+), manganese (Mn2+), iron (Fe2+), zinc (Zn2+), sulphur (S), silica (Si) and phosphorous (P) were analysed in ash sampled from a sloped area burned in a wildfire and from litter from a contiguous unburned area, with similar morphological conditions. The results showed that ash leachates had higher pH and EC, and were significantly richer in water‐extractable Ca2+, Mg2+, Na+, K+, SPAR, S and Si and significantly poorer in water‐extractable Al3+, Fe2+, Mn2+ and Zn2+ than litter solutions. No significant differences were observed in water‐extractable P. The fire changed the ash solute chemistry compared with the unburned litter and increased the sample variability of nutrient distribution with potential implications for plant recovery. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
203.
204.
This paper presents the results of a new investigation of the Guarani Aquifer System (SAG) in São Paulo state. New data were acquired about sedimentary framework, flow pattern, and hydrogeochemistry. The flow direction in the north of the state is towards the southwest and not towards the west as expected previously. This is linked to the absence of SAG outcrop in the northeast of São Paulo state. Both the underlying Pirambóia Formation and the overlying Botucatu Formation possess high porosity (18.9% and 19.5%, respectively), which was not modified significantly by diagenetic changes. Investigation of sediments confirmed a zone of chalcedony cement close to the SAG outcrop and a zone of calcite cement in the deep confined zone. The main events in the SAG post-sedimentary history were: (1) adhesion of ferrugineous coatings on grains, (2) infiltration of clays in eodiagenetic stage, (3) regeneration of coatings with formation of smectites, (4) authigenic overgrowth of quartz and K-feldspar in advanced eodiagenetic stage, (5) bitumen cementation of Pirambóia Formation in mesodiagenetic stage, (6) cementation by calcite in mesodiagenetic and telodiagenetic stages in Pirambóia Formation, (7) formation of secondary porosity by dissolution of unstable minerals after appearance of hydraulic gradient and penetration of the meteoric water caused by the uplift of the Serra do Mar coastal range in the Late Cretaceous, (8) authigenesis of kaolinite and amorphous silica in unconfined zone of the SAG and cation exchange coupled with the dissolution of calcite at the transition between unconfined and confined zone, and (9) authigenesis of analcime in the confined SAG zone. The last two processes are still under operation. The deep zone of the SAG comprises an alkaline pH, Na–HCO3 groundwater type with old water and enriched δ13C values (<?3.9), which evolved from a neutral pH, Ca–HCO3 groundwater type with young water and depleted δ13C values (>?18.8) close to the SAG outcrop. This is consistent with a conceptual geochemical model of the SAG, suggesting dissolution of calcite driven by cation exchange, which occurs at a relatively narrow front recently moving downgradient at much slower rate compared to groundwater flow. More depleted values of δ18O in the deep confined zone close to the Paraná River compared to values of relative recent recharged water indicate recharge occur during a period of cold climate. The SAG is a “storage-dominated” type of aquifer which has to be managed properly to avoid its overexploitation.  相似文献   
205.
206.
In the Central American Volcanic Arc, adakite-like volcanism has often been described as volumetrically insignificant. However, extensive silicic adakitic volcanism does occur in the Panamanian arc and provides an opportunity to evaluate the origin of this magma-type as well as to contrast its origin with other Central American silicic magmas. The Quaternary volcanic deposits of El Valle volcano are characterized by pronounced depletions in the heavy rare earth elements, low Y, high Sr, high Sr/Y, relatively high MgO, and low K2O/Na2O, when compared with other Quaternary Central American volcanics at similar SiO2. These chemical features are also diagnostic of adakitic signatures. Our new 40Ar/39Ar ages of lava flows and ash flows that compose the volcanic edifice of El Valle volcano illustrate that the eruptive volume of adakitic-like volcanism is substantial during the Quaternary (~120 km3). Adakitic-like magmas dominate the stratigraphic record. Common to all models for the origin of an adakite geochemical signature is the involvement of garnet, as a residual or fractionating phase. The stability of garnet in hydrous magmas has been recently reevaluated with important consequences; garnet is a stable primary igneous phase at pressure and temperature conditions expected for magma differentiation at the roots of a mature island arc. Moreover, adakite-like volcanism erupted at El Valle volcano displays the middle rare earth element depletion observed in other Panamanian volcanic centers that has been attributed to significant amphibole fractionation. Extensive amphibole fractionation may have occurred in two stages. The first stage of fractionation, garnet + amphibole fractionation, occurs from hydrous basaltic–andesitic parental magmas that have ponded at the base of an overthickened crust. The second stage occurs at mid-lower crustal levels where abundant amphibole + plagioclase and minor sphene crystallized from water-rich magmas. These two stages combined may have resulted in an amphibole-rich cumulate layer. This amphibole layer is likely the source of the abundant amphibole-rich cumulate enclaves and blobs found in volcanic products across the Panamanian arc. Stalling of water-rich magmas during this two-stage fractionation process could drive the interstitial liquids to the evolved compositions typical of continental crust, while leaving behind amphibole-rich cumulate rocks that may eventually be returned to the asthenosphere. Differentiation of H2O-rich magmas under the conditions appropriate for the roots of island arcs may therefore be a key process in developing a better understanding of the generation of continental crust in island arc environments.  相似文献   
207.
Arsenic levels (up to 130 mg kg−1) substantially exceeding the official threshold have recently been documented in beach and nearshore sediments along more than 50 km of coastline in the Brazilian state of Espírito Santo between 19°50′ and 20°12′S. In an attempt to assess the sources of this enrichment, we performed a study on arsenic distribution in the main mineral substances and living organisms in the beach environment. Laboratory tests on arsenic retention by beach carbonate debris have also been carried out. The data suggest that sedimentary arsenic occurs largely bound to particles of the calcareous red alga Corallina panizzoi, whereby live specimens contained much smaller amounts of this metalloid than was the case for nonliving material (2.4 and 20.3 mg kg−1, respectively). Experimental tests confirmed the ability of C. panizzoi detritus to retain arsenic at pH intervals and ionic strength characteristic of seawater. There are two potential sources of that metalloid for calcareous debris in sediments: brown macroalgae, which were found to contain high levels of As (up to 66.3 mg kg−1), and ferruginized sandstones (up to 23.0 mg kg−1). We argue that any contribution of brown algae to beach sediment enrichment by As would be minor, and consider the ferrous sandstones from coastal sedimentary rocks of the Barreiras Group as the principal large-scale source of arsenic in the marine environment of Espírito Santo. The experimental data, together with field studies, corroborate the interpretation that arsenic anomalies in sediments with calcareous debris can form when weathered continental rocks even only slightly enriched in As are leached by marine waters, and the As is at least partially retained by biogenic calcareous detritus in nearshore sediments. Considering that rocks of the Barreiras Group are exposed to marine erosion far to the north of Espírito Santo, we estimate that marine sediments containing calcareous material are “anomalously” enriched in As along approximately 2,000 km of the Brazilian tropical coastline.  相似文献   
208.
Following the work of Garcia et al. (2001a) (GFCB), we compute the thermal properties and ionization structure of magnetically-driven disk winds. The original model's dominant heating function along the jet, ambipolar diffusion, is augmented by a mechanical heating term supposed to arise from weak shocks, as used by (Shang et al., 2002). We add this mechanical heating function to a cold disk wind model and calculate its effect on the jet as a whole. The temperature and ionization of the flow are calculated in the case of cold jet solutions consistent with the underlying accretion disk (Ferreira, 1997). These solutions are compared to those of (GFCB) in order to quantitatively determine the effect of the mechanical heating on the flow. We then use the computed thermal and ionization structures to calculate jet synthetic observations. We find that the addition of mechanical heating leads to higher electron fractions, in turn leading to increased line fluxes and line ratios approaching observed values.  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号