首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64263篇
  免费   603篇
  国内免费   1226篇
测绘学   2323篇
大气科学   4722篇
地球物理   11833篇
地质学   26934篇
海洋学   4551篇
天文学   10757篇
综合类   2213篇
自然地理   2759篇
  2021年   199篇
  2020年   239篇
  2019年   298篇
  2018年   7067篇
  2017年   6349篇
  2016年   4243篇
  2015年   690篇
  2014年   783篇
  2013年   1319篇
  2012年   2472篇
  2011年   5408篇
  2010年   4752篇
  2009年   5254篇
  2008年   4300篇
  2007年   5276篇
  2006年   1216篇
  2005年   1464篇
  2004年   1519篇
  2003年   1498篇
  2002年   1139篇
  2001年   677篇
  2000年   717篇
  1999年   575篇
  1998年   574篇
  1997年   523篇
  1996年   395篇
  1995年   394篇
  1994年   408篇
  1993年   313篇
  1992年   308篇
  1991年   258篇
  1990年   310篇
  1989年   270篇
  1988年   254篇
  1987年   278篇
  1986年   237篇
  1985年   317篇
  1984年   338篇
  1983年   329篇
  1982年   313篇
  1981年   270篇
  1980年   289篇
  1979年   216篇
  1978年   205篇
  1977年   215篇
  1976年   183篇
  1975年   190篇
  1974年   176篇
  1973年   166篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
Aiming to study the relationship between Venus surface heights and surface roughness, the Pioneer Venus surface altitude map and map of r.m.s. slope in m-dkm scale have been analy sed for the Beta and Ishtar regions using a system of digital image processing. To integrate the data obtained, the results of geomorphological analysis of Venera 9 and 10 TV panoramas as well as gamma-spectrometric and photometric measurements were used. The analysis gives proof that Venera 9 and 10 landing sites represent geologic-morphologic situations typical of Venus, thus enabling the results of observations made at landing sites to be extended to large provinces. Apparently this conclusion is also applicable to the Venera 8 landing site. No strong relationship exists between the roughness of the surface and its altitude or the amount of a regional slope; neither for the Beta nor for the Ishtar region. A weak direct correlation observable for roughness-altitude pairs for the Beta region and roughness-altitude, roughness-slope pairs for the Ishtar region are quite obviously a consequence of regional roughness control, i.e. of an overall character of geological structure. On Venus the factors contributing to higher surface roughness on the m-dkm scale are, obviously, mostly volcanic and tectonic in their nature whilst those responsible for smoothing-out of the surface are chiefly exogenic. The rate of exogenic transformation of the Cytherean surface may be fairly high. On Venus, similarly as on the Earth, active tectono-magmatic processes have possibly taken place in recent geological epochs. One of the places where they are manifest is an extensive zone running from north to south across the Beta, Phoebe and Themis highlands. Within its limits occur both the process of basaltic shield-type volcanism and areal basalt effusions at low hypsometric levels accounting for the formation of lowland plains at the expense of ancient rolling plains. The basalts of the shield volcano Beta show some differences in composition compared to those of areal effusions at low hypsometric levels. The overall character of Cytherean tectonics in the recent geologic epoch is apparently block-type with a predominance of vertical movements. Against the background of the sinking of some of the blocks the other ones are rising and, possibly, such compensation upheavals have been responsible for the formation of the Ishtar region.  相似文献   
992.
The latitudinal variation of the photolysis frequency of ozone to O(1D) atoms, J(O1D), was measured using a filter radiometer during the cruise ANT VII/1 of the research vessel Polarstern in September/October 1988. The J(O1D) noon values exhibited a maximum of 3.6×10-5 s-1 (2 sr) at the equator and decreased strongly towards higher latitudes. J(O1D) reached highest values for clean marine background air with low aerosol load and almost cloudless sky. The J(O1D) data, measured under these conditions and a temperature of 295 K, can be expressed by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaacI% cacaqGpbWaaWbaaSqabeaaiiaacqWF8baFaaGccaqGebGaaeykaiaa% bccacqWF9aqpcaqGGaGaaeyzaiaabIhacaqGWbGaaeiiaiaabUhacq% GHsislcaaI4aGaaiOlaiaaicdacaaIYaGaeyOeI0IaaGioaiaac6ca% caaI4aGaaiiEaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZa% aaaOGaaeiiaiaabIhacaqGGaGaam4uaiabgUcaRiaaiodacaGGUaGa% aGinaiaacIhacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOnaa% aakiaadofadaahaaWcbeqaaiaaikdaaaGccaGG9bGaaeikaiaaboha% daahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaaaaa!5EE9!\[J({\text{O}}^| {\text{D) }} = {\text{ exp \{ }} - 8.02 - 8.8x10^{ - 3} {\text{ x }}S + 3.4x10^{ - 6} S^2 \} {\text{(s}}^{ - 1} )\] where S represents the product of the overhead ozone column (DU) and the secant of the solar zenith angle. The meridional profile of the primary OH radical production rate P(OH) was calculated from the J(O1D) measurements and simultaneously recorded O3 and H2O mixing ratios. While the latitudinal distribution of J(O1D) and water vapour was nearly symmetric to the equator, high tropospheric ozone levels up to 40 ppb were observed in the Southern Hemisphere, SH, resulting in higher P(OH) in the SH.  相似文献   
993.
Thermal emission is modeled from a canopy/soil surface, where the soil and the leaves are at different temperatures,T g andT c respectively. The temperatureT m corresponding to a radiometer reading is given by $$B_\lambda (T_m ) = \chi B_\lambda (T_g ) + (1 - \chi )B_\lambda (T_c ) ,$$ whereB λ denotes the Planck blackbody function at wavelength λ, χ specifies the fraction of the field of view occupied by the soil at a given view direction, and an emissivity of 1.0 is assumed for the plants and the soil. The dependence of the soil-fraction χ on the view direction and the structure is expressed by the viewing-geometry parameter, which allows for concise and simple formulation. We observe from our model that at large view zenith angles, only the plants are effectively seen (that is, χ tends to zero), and thereforeT c can be determined from observations at large zenith angles, to the extent that such observations are practical. Viewing from the zenith, χ = exp(-L hc), whereL hc is the projection of the canopy leaf-area (per unit surface area) on a horizontal plane. For off-zenith observations, the soil-fraction χ depends on the distribution in the azimuth of the projected areas of various leaf categories, in addition to the dependence on the sum total of these projections,L hc.L hc, rather than the leaf-area index, emerges as the parameter characterizing the optical thickness of the canopy. Inferring bothT c andT g from observations from the zenith and from large zenith angles is possible ifL hc is known from other measurements. Drooping of leaves under water-stress conditions affects the observed temperatureT m in a complicated way because a leaf-inclination change produces a change inL hc (for the same leaf area) and also a change in the dependence of χ on the view direction. Water stress can produce an increase of the soil-fraction χ and thus tends to produce an exaggerated increase in the observed temperature compared to the actual increase in canopy temperature. These effects are analyzed for a simulated soybean canopy.  相似文献   
994.
A cool period from about 11000 to 10 500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of meltwater presence (a — 3 per mil shift in 18O and a +1.1 per mil shift in 13C), increased sand, and reduced detrital calcite content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Algonquin during the first eastward discharge of glacial Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that the cold extra inflow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance.Contribution to Climo Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate ProgramGeological Survey of Canada Contribution 58 890  相似文献   
995.
Summary The forntal passage of 8 October 1987, which was extensively sampled during the first intense observation period of the German Front Experiment, is simulated by aid of three mesoscale models. The results are intercompared and held against the manually and objectively analysed observations of the meso and meso- scales, respectively. The orographic impact is studied by comparing model runs with full and cut-off Alps. Implications regarding similar efforts in the future conclude the paper.With 11 Figures  相似文献   
996.
Summary A number of forecast experiments were performed in order to assess the capability of reproducing, by means of a limited-area numerical model, the highly structured mesoscale circulations occurring in the Po Valley of Northern Italy during a north-westerly cold front passage across the Alpine chain, with particular attention to the modelling of the effects of organized convection. The case-study occurred during summer 1987 and the model used throughout was the 1989 version of the UB/NMC Limited Area Model (University of Belgrade, National Meteorological Centre of Washington). The model was integrated both with eta, , and sigma, , as vertical coordinates and ECMWF initialized analyses were always used as initial conditions. ECMWF initialized analysis or operational forecast fields were also used for updating in time the lateral boundary conditions. Experiments show qualitative and quantitative agreement with observations, both in upper-air geopotential height fields, in MSLP and in cumulated precipitation. Several modelling issues were also investigated, e.g. sensitivity of the results to horizontal and vertical model resolution and to the influence of the lateral boundaries poitioning, finding large effects of the latter on quantitative precipitation fields. Difficulties in modelling very localized mesoscale phenomena, e.g. organized convective thunderstorms in the Po Valley and Alpine North Foehn in the Milan area, were generally encounted.  相似文献   
997.
The 1500 m thick sequence of Huronian continental volcanics at Thessalon, Ontario is subdivided into 4 volcanic cycles, each of which includes abundant early mafic end-members, central intermediate flows, and late rhyolite units. Major and trace element concentrations are dominated by extensive gabbroic fractionation trends that ultimately produced two types of felsic flows: (1) rhyolites with high light rare earth element (LREE) and relatively low large-ion lithophile element (LILE) concentrations (high-LREE, low-LILE rhyolites), and (2) following late separation of REE-rich accessory phases, rhyolites depleted in LREE (low-LREE, high-LILE rhyolites). Mafic end-members of individual volcanic cycle are progressively less siliceous and less enriched in LILE and LREE with height in the stratigraphic section. Ti/Zr ratios gradually rise from 35 in early mafic flows to stabilize at about 85 in late units, while average SiO2 contents decrease from 56 to about 50% and Mg# rises from about 48 to 52. -Nd values are consistently negative, indicating variable degrees of pre-fractionation crustal contamination of the end-member magmas during their uprise through the crust. Mixing models are consistent with up to 50% contamination by crustal material of tonalitic hornblende-gneiss composition. A progressive increase in -Nd, from about-5.0 to-0.5 upward in the volcanic succession, reflects a decreasing degree of crustal contamination due to development of insulating layers along margins of the feeder system. Detailed stratigraphic variations suggest that successive magmas batches were intercepted by a progressively fractionating, periodically replenished magma source, giving rise to open-system magmatism. Despite the prevalence of crustal assimilation in the Huronian lavas, (La/Sr)N ratios are too low in least contaminated end-members to be explained by contamination of tholeiitic magmas. The late basalts resemble instead modern island are basalts, and it is suggested that the subcontinental mantle source was enriched by subduction-related processes during crustal formation. Within individual volcanic cycles gabbroic fractionation trends systematically deviate from calculated factors toward compositions characteristic of hornblende-gneiss. Such relations suggest that further crustal contamination of the magmas occurred simultaneous with crystal fractionation. probably within undulating sills at upper crustal levels. Quantitative analysis suggests assimilation/fractional crystallization (A/FC) ratios of about 0.45. As a result of extensive two-stage contamination, rhyolites from the initial volcanic cycle incorporate a total of over 60% of crust.  相似文献   
998.
Glassy pillow basalts with unusual geochemical characteristics for mid-ocean ridge basalt (MORB) have been dredge sampled from the Southwest Indian Ridge between 12 and 15°E during Leg ANT IV/4 of the F.S. POLARSTERN. Lavas from 4 of 6 dredges are moderately nepheline normative, highly K-enriched (0.5–1.77 wt% K2O) alkali basalts and hawaiites. Mg-numbers indicate that many of the lavas are fairly primitive (Mg No.=63–67), yet show extreme enrichment in incompatible elements; e.g. Nb (24–60 ppm), Ba (170–470 ppm) and Sr (258–460 ppm). Incompatible-element ratios such as Zr/Nb (3–5) and Y/Nb (0.46–1.1) are extremely low even for E-type (enriched) MORB, whereas (La/Yb)n ratios are particularly high (3.4–7.8). 87Sr/86Sr (0.70290–0.70368), 143Nd/144Nd (0.51302–0.51284) and 206Pb/204Pb (18.708–19.564) isotopic ratios further indicate the geochemically enriched nature of these lavas, which range from the compositional field for depleted N-type (normal) MORB towards the composition of Bouvet Island lavas. Mutually correlated incompatible-element and Sr-, Nd- and Pb-isotopic ratios allow a fairly well constrained model to be developed for the petrogenesis of these unusually alkalic mid-ocean ridge lavas. The alkalic nature and degree of enrichment in incompatible elements is ascribed to particularly low degrees of partial melting (3–5 wt%), at greater than usual depth, of a source region that has experienced prior geochemical enrichment (by veining) related to the upwelling Bouvet mantle plume. To account for the observed compositional variations, a model is proposed whereby mixing between partial melts derived from these geochemically enriched silicate veins, and an incipient to low percentage (±2%) melt from the surrounding geochemically depleted suboceanic asthenosphere occurs as a consequence of increasing degree of melting with adiabatic upwelling. Eruption of these alkalic lavas in this spreading ridge environment is attributed to a temporary hiatus in tholeiitic volcanism and associated spreading along this section of the Southwest Indian Ridge, related to readjustment of spreading direction to a more stable plate geometry.  相似文献   
999.
Mo mineralization within the Galway Granite at Mace Head and Murvey, Connemara, western Ireland, has many features of classic porphyry Mo deposits including a chemically evolved I-type granite host, associated K- and Si-rich alteration, quartz vein(Mace Head) and granite-hosted (Murvey) molybdenite, chalcopyrite, pyrite and magnetite mineralization and a gangue assemblage which includes quartz, muscovite and K-feldspar. Most fluid inclusions in quartz veins homogenize in the range 100–350°C and have a salinity of 1–13 eq. wt.% NaCl. They display Th-salinity covariation consistent with a hypothesis of dilution of magmatic water by influx of meteoric water. CO2-bearing inclusions in an intensely mineralized vein at Mace Head provide an estimated minimum trapping temperature and pressure for the mineralizing fluid of 355°C and 1.2 kb and are interpreted to represent a H2O-CO2 fluid, weakly enriched in Mo, produced in a magma chamber by decompression-activated unmixing from a dense Mo-bearing NaCl-H2O-CO2 fluid. 34S values of most sulphides range from c. 0 at Murvey to 3–4 at Mace Head and are consistent with a magmatic origin. Most quartz vein samples have 18O of 9–10.3 and were precipitated from a hydrothermal fluid with 18O of 4.6–6.7. Some have 18O of 6–7 and reflect introduction of meteoric water along vein margins. Quartz-muscovite oxygen isotope geothermometry combined with fluid inclusion data indicate precipitation of mineralized veins in the temperature range 360–450°C and between 1 and 2 kb. Whole rock granite samples display a clear 18O-D trend towards the composition of Connemara meteoric waters. The mineralization is interpreted as having been produced by highlyfractionated granite magma; meteoric water interaction postdates the main mineralizing event. The differences between the Mace Head and Murvey mineralizations reflect trapping of migrating mineralizing fluid in structural traps at Mace Head and precipitation of mineralization in the granite itself at Murvey.  相似文献   
1000.
The general equation for radiative transfer in the Milne-Eddington model is considered here. The scattering function is assumed to be quadratically anisotropic in the cosine of the scattering angle and Planck's intensity function is assumed for thermal emission. Here we have taken Planck's function as a nonlinear function of optical depth, viz.,B v(T)=b o+b 1 e . The exact solution for emergent intensity from the bounding face is obtained by the method of the Laplace transform in combination with the Wiener-Hopf technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号