首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   3篇
  国内免费   1篇
大气科学   4篇
地球物理   17篇
地质学   38篇
海洋学   10篇
天文学   8篇
自然地理   5篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
61.
The Alban Hills ultrapotassic volcanic district is one of the main districts emplaced during Quaternary time along the Tyrrhenian margin of Italy. Alban Hills lava flows and scoria clasts are made up essentially of clinopyroxenes and leucites and their chemical composition is mostly K-foiditic. Differentiated products (MgO < 3 wt.%) are characterised by low SiO2 concentration (< 50 wt.%) and geochemical features indicate that this unique differentiation trend is driven by crystal fractionation plus carbonate crust interaction. Notably, the Alban Hills Volcanic District was emplaced into thick limestone units. With the aim of constraining the magmatic differentiation, we performed experiments on the Alban Hills parental composition (plagioclase-free phono-tephrite) under anhydrous, hydrous, and hydrous-carbonated conditions. Experiments were carried out at 1 atm, 0.5 GPa and 1 GPa, temperatures ranging from 1050 to 1300 °C, and H2O and CaCO3 in the starting material up to 2 and 7 wt.%, respectively. The experiments performed at 0.5 GPa are the most representative of the Alban Hills plumbing system. Clinopyroxene and leucite are the main phases occurring under all the investigated conditions and the liquidus phases. Nevertheless, our experimental results demonstrate that the occurrence of CaCO3 in the starting material strongly affects phase relations. Experiments performed under hydrous conditions crystallize magnetite and phlogopite at relatively high temperature. This early crystallization drives the glass composition towards a silica enrichment, resulting in a differentiation trend moving from phono-tephritic (Alban Hills parental composition) to phonolitic compositions. This is in contrast with micro-textural evidence showing late crystallization of magnetite and phlogopite in the natural products and with the composition of the juvenile products. On the contrary, in the CaCO3-bearing experiments (i.e., simulating magma–carbonate interaction) the magnetite and phlogopite stability fields are strongly reduced. As a consequence, the melt differentiation is mainly controlled by the cotectic crystallization of clinopyroxene and leucite, resulting in a differentiation trend moving towards K-foiditic compositions. These experimental results are in agreement with micro-textural features and chemical compositions of Alban Hills natural products and with the magmatic differentiation model inferred by geochemical data. Magma–carbonate interaction is not a rare process and its occurrence has been demonstrated for different plumbing systems. However, the uniqueness of the Alban Hills liquid line of descent suggests that the efficacy of the carbonate contamination process is controlled by different factors, the dynamics of the plumbing system being one of the most important.  相似文献   
62.
Sedimentation in the upstream reaches of incised valleys is predominantly of alluvial origin and, in most cases, independent from relative sea‐level or lake‐level oscillations. Preserved facies distributions record the depositional response to a combination of allogenic factors, including tectonics, climate and landscape evolution. Tectonics drive fluvial aggradation and degradation through local changes in gradient, both longitudinal and transverse to the valley slope. This article deals with a Pliocene–Pleistocene fluvial valley fill developed in the north‐eastern shoulder of the Siena Basin (Northern Apennines, Italy). Evolution of the valley was not influenced by sea‐level or lake‐level changes and morphological and depositional evolution of valley resulted from extensional tectonics that gave rise to normal and oblique‐slip faults orthogonal and parallel to the valley axis. Data from both field observations and geophysical study are interpreted to develop a comprehensive tectono‐sedimentary model of coeval longitudinal and lateral tilting of the developing alluvial plain. Longitudinal tilting was generated by a transverse, upstream‐dipping normal fault that controlled the aggradation of fining‐upward strata sets. Upstream of the fault zone, valley back‐filling generated an architecture similar to that of classic, sea‐level‐controlled, coastal incised valleys. Downstream of the fault zone, valley down‐filling was related to an overwhelming sediment supply sourced and routed from the active fault zone itself. Lateral tilting was promoted by the activity of a fault oriented parallel to the valley axis, as well as by different offsets along near orthogonal faults. As a result, the valley trunk system experienced complex lateral shifts, which were governed by interacting fault‐generated subsidence and by the topographic confinement of progradational, flank‐sourced alluvial fans.  相似文献   
63.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   
64.
We use recently digitized sunspot drawings from Mount Wilson Observatory to investigate the latitudinal dependence of tilt angles of active regions and its change with solar cycle. The drawings cover the period from 1917 to present and contain information as regards polarity and strength of magnetic field in sunspots. We identified clusters of sunspots of same polarity, and used these clusters to form “bipole pairs”. The orientation of these bipole pairs was used to measure their tilts. We find that the latitudinal profile of tilts does not monotonically increase with latitude as most previous studies assumed, but instead, it shows a clear maximum at about 25?–?30 degree latitudes. Functional dependence of tilt (\(\gamma\)) on latitude (\(\varphi\)) was found to be \(\gamma= (0.20\pm0.08) \sin(2.80 \varphi) + (-0.00\pm0.06)\). We also find that latitudinal dependence of tilts varies from one solar cycle to another, but larger tilts do not seem to result in stronger solar cycles. Finally, we find the presence of a systematic offset in tilt of active regions (non-zero tilts at the equator), with odd cycles exhibiting negative offset and even cycles showing the positive offset.  相似文献   
65.
The influence of climate on mountain denudation has been the topic of an intense debate for two decades. This debate partly arises from the covariation of rainfall and topography during the growth of mountain ranges, both of which influence denudation. However, the denudational response of this co-evolution is poorly understood. Here, we use a landscape evolution model where the rainfall evolves according to a prescribed rainfall–elevation relationship. This relationship is a bell curve defined by a rainfall base level, a rainfall maximum and a width around the rainfall peak elevation. This is a first-order model that fits a large range of orographic rainfall data at the ca. 1-km spatial scale. We carried out simulations of an uplifting block with an alluvial apron, starting from an initially horizontal surface, and testing different rainfall–elevation relationships. We find that the denudation history is different from that with constant rainfall models. The results essentially depend on the ratio between the final steady-state summit elevation Hss and the prescribed rainfall peak elevation Hp. This ratio is hard to predict because it depends on the transient coupling of rainfall and elevation. We identified three types of results according to Hss/Hp. If Hss/Hp > 4 (Type I), the denudation rates peak when the summits reach values close to Hp. If Hss/Hp > 1.5 and < 4 (Type II), the denudation is strongly accelerated when the elevation of the summits approaches Hp, and then the denudation increases slowly towards the uplift rate. If Hss/Hp < 1.5 (Type III), the denudation evolution is similar to situations with constant and homogeneous rainfall. In the Type I and II experiments, the mountain top is subjected to aridification once the summits have passed through Hp. To adapt to this reduced rainfall, the slopes increase. This can lead to a paradoxical situation where the mountain relief increases faster, whereas the denudation increases more slowly. The development of orographic precipitation may thus favour the stability of the mean denudation rate in a rising mountain. Despite the model limitations, including a constant rainfall–elevation relationship, our study suggests that the “classical” exponential increase in the denudation rate predicted by constant rainfall models is not the common case. Instead, the common case involves pulses and acceleration of the denudation even in the absence of uplift or global climate variations.  相似文献   
66.
In situ U–Pb dating and Lu–Hf systematics of zircon in granites of the Hodgkinson Province in the northern Tasman orogenic belt, Queensland, Australia, reveal input of isotopically more evolved crustal magmas and larger ranges in 176Hf/177Hf in the Carboniferous I-type granites (0.28219–0.28269; weighted average ~0.28245) than in the Permian S-type granites (0.28249–0.28280; weighted average ~0.28262) and Permian I-type granites (0.28253–0.28274; weighted average ~0.28260). The wide range in the Hf-isotope compositions of zircons in the Carboniferous and Permian granites can be explained by remelting of a heterogeneous Mesoproterozoic crustal source, whereas a narrow range reflects the subsequent dissolution of inherited grains/cores and magma homogenisation before zircon crystallisation. Alternatively, mixing between the most radiogenic and unradiogenic magmas can produce the isotopic variation seen in other Carboniferous granites. Remelting of Neoproterozoic average crust or mafic younger crust can produce the more radiogenic Hf-isotope compositions of zircons in the Permian S-type granites. An overlap between the Hf-isotope signatures of the Carboniferous I-type granites in the southwestern Hodgkinson Province and the northeastern Australian craton (0.28211–0.28254) and evidence for major magmatic events at 1,585–1,545 and 345–300 Ma imply that the southwestern province is underlain by cratonic crust, which wedges out towards the northeast. The more radiogenic Hf-isotope signature of the Permian granites and a lack of evidence for these major magmatic events in the southeastern and central Hodgkinson Province imply that these parts are characterised by different crustal sources and crustal evolution histories.  相似文献   
67.
Oil pollution is a significant conservation concern. We examined data from six institutions along the coast of South America: Emergency Relief Team of the International Fund for Animal Welfare, Fundación Mundo Marino, Centro de Recupera??o de Animais Marinhos, Natura Patagonia, Associa??o R3 Animal, and Mar del Plata Aquarium and data from resightings in Argentina, Brazil, Chile and Falkland/Malvinas Islands. From 2000 to 2010, 2183 oiled Magellanic penguins were rehabilitated as part of the routine activities of these institutions or during emergency responses to eight oil spills in which they were involved; all rehabilitated penguins were flipper banded and released. Since their release, 41 penguins were resighted until 31 December 2011. The results demonstrate that, when combined with other prevention strategies, the rehabilitation of Magellanic penguins is a strategy that contributes to the mitigation of adverse effects of oil spills and chronic pollution to the species.  相似文献   
68.
Magellanic penguins migrate from Patagonia reaching northern Argentina, Uruguay, and southern Brazil on their winter migration, in parallel with the seasonal pulse of anchovy spawning. In 2008, Magellanic penguins went further north than usual. Many died and a few swam nearly to the Equator. Twelve groups surveyed 5000 km of coastline encountering 3371 penguins along the coast. Most penguins arrived in northern Brazil (68.4%) without petroleum (2933, 87%). Almost all penguins without petroleum were juveniles (2915, 99%) and 55% were alive when found. Penguins were dehydrated, anemic, hypothermic, and emaciated. Of the penguins with petroleum, 13% arrived in the southern half of Brazil, showing that petroleum pollution remains a problem along the SW Atlantic coast. The mortality occurred in the winter of 2008 when sea surface temperature were unusually cold perhaps reducing the prey for penguins.  相似文献   
69.
70.
The distribution of megabenthic epifauna (invertebrates) in the Balearic Basin (western Mediterranean) has been analyzed at depths between 427 and 2265 m after compiling samplings performed in 1985–1992 and 2007–2008 with an OTSB-14 bottom trawl. 84 epibenthic taxa of invertebrates (excluded decapod crustaceans) were collected. Epibenthic assemblages were organized in five groups (n-MDS analyses) as a function of increasing depth: upper slope assemblage, U, hauls between 427 and 660 m; middle slope assemblages M1 and M2, hauls between 663–876 m and 864–1412 m, respectively; lower slope assemblages L1 and L2, hauls between 1488–1789 m and 1798–2265 m, respectively). We found significant differences in assemblage composition between all depth-adjacent pairs of groups. Trends in the distribution of biomass vs. depth and within assemblages varied when hauls taken over insular were compared to those over mainland slopes. Over insular slopes we found (n-MDS) only four distinct depth assemblages, with significant differences between all depth-adjacent group pairs, except between L1 and L2. Over the mainland slope, two peaks of biomass situated at U (427–660 m) and at L1 (1488–1789 m) were clearly identified, attributable to the echinoid Brissopsis lyrifera and holothurian Molpadia musculus at U and to the synallactid holothurian Mesothuria intestinalis at L1. The distribution of biomass vs. depth on insular slopes did not follow this pattern, showing no significant biomass peak below 1000 m and a total biomass an order of magnitude lower than adjacent to the mainland. After compiling available environmental data over the mainland slope off Barcelona, we found coincidence between the peak biomass of Mesothuria intestinalis and: i) a significant increase of labile OM (%OrgC, C/N, hydrolizable aminoacids–EHAA, and the EHAA/THAA-total hydrolizable aminoacids-ratio) over 1600 m; and ii) an increase of turbidity and T at 1500–1600 m in February 2008. We suggest that such OM inputs must likely be associated to the formation of nepheloid layers close to submarine canyons, probably associated with oceanographic processes in deep water masses in the area. This would explain why aggregations of M. intestinalis were linked to the mainland part of the Balearic basin, with highest densities located south of canyons. If hotspots of biomass as cited here for M. intestinalis are regulated by factors such as river inputs, both natural climatic changes (e.g. changes in rainfall regimes) and human impact (e.g. river damming) may affect deep-Mediterranean communities below 1000 m.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号