首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   7篇
  国内免费   17篇
测绘学   10篇
大气科学   29篇
地球物理   67篇
地质学   220篇
海洋学   38篇
天文学   12篇
综合类   12篇
自然地理   18篇
  2023年   3篇
  2022年   29篇
  2021年   31篇
  2020年   15篇
  2019年   25篇
  2018年   25篇
  2017年   38篇
  2016年   30篇
  2015年   13篇
  2014年   25篇
  2013年   37篇
  2012年   23篇
  2011年   15篇
  2010年   14篇
  2009年   10篇
  2008年   9篇
  2007年   13篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有406条查询结果,搜索用时 31 毫秒
21.
The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6 m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6 m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory.  相似文献   
22.
Participation of local people during any disaster is enormous. They possess better knowledge and information about their own community than anyone else from the outside. This study proposes Participatory Vulnerability Reduction (PVR), a community-based approach for disaster management. The concept of PVR was applied to an urban community of Dhaka city (Ward no. 06 of Dhaka North City Corporation) which has been identified by the Comprehensive Disaster Management Programme as one of the most vulnerable areas of the city for earthquake. PVR consists three steps, and in each step, different participatory urban appraisal tools were used. In the first step, the community people assessed the earthquake vulnerability. It was found that some certain parts of the study area are highly vulnerable due to lack of accessibility to the critical facilities, inadequacy of open space, poor construction practice and unsuitable soil condition for building construction. This was followed by analyzing the root causes and effects of these problems. Structural fragility of the buildings, construction of settlements by filling the low-lying areas and development of slums beside taller buildings are the three major causes behind the above vulnerable issues. In the second step, capacity of the community was assessed in terms of resources and their organizational structure. In the final step, local people developed the strategies to overcome the vulnerability and a community-based organizational set up was proposed to coordinate the collective actions. Although developed in local context, application of PVR is not limited for earthquake and it can be replicated for other communities as well.  相似文献   
23.
Researchers ubiquitously noted that the common processes of partitioning oblique convergence in response to drag from the trench-hanging plate simultaneously produce radial slips, along-strike translation, and extension parallel to the deformation front. Here, we focus on the area between Nepal and Sikkim–Darjeeling Himalayas, and carry out gravity and finite-element stress modeling of the strike-orthogonal converging Indian lithosphere. We delineate the geometries of different layers and their interfaces through gravity modeling. The optimum model parameters along with rheological parameters of different layers are used for finite-element modeling. Finite-element modeling is done with boundary conditions of keeping the upper surface free and rigidly fixing the section of the northern boundary below the Main Himalayan Thrust. We impart on its frontal section an amount of 6 × 1012 N/m force, equivalent to resistive force of the Himalayan–Tibet system, and analyze the maximum and minimum compressive stress fields evolved in the lithosphere. We testify our observations with earthquake database and other geophysical and geological studies. We note that an increasing flexing of the Indian lithosphere beyond the Main Boundary Thrust becomes maxima between the Main Central Thrust and South Tibetan Detachment in both the areas; however, more steepening of the Moho boundary is identified in the Sikkim–Darjeeling Himalaya. This abrupt change in lithospheric geometry beneath the Greater Himalaya is likely correlated with the sharp elevation changes in the topography. Although the highest seismicity concentration is dominant in this zone, the Lesser and the Tethys Himalayas in Sikkim–Darjeeling area also record relatively fair seismic activity. More compressive stress field in different layers right within the sharp bending zone supports this observation. We thus propose that the sharp bending zone beneath the Greater Himalaya is suffering maximum deformation, and the deformation is continued in the mantle too. We also identify both right-lateral shear and radial vergence slip, which are presumably associated with the general dynamics and kinematics of the Himalaya.  相似文献   
24.
In this paper, a two-dimensional, vertically integrated hydrodynamic model is developed taking into account entrained air bubbles during storm surges as well as incorporating inverted barometer, and river and land dynamics. The model is specifically designed for the coastal region of Bangladesh. A nested scheme method with a fine mesh scheme (FMS), capable of incorporating the complex coastline and all major offshore islands accurately, nested into a coarse mesh scheme (CMS) covering up to 15° N latitude in the Bay of Bengal is used. To incorporate the small and big offshore islands in the Meghna estuarine region with its complex coastline accurately, a very fine mesh scheme (VFMS) is again nested into the FMS. Along the northeast corner of the VFMS, the Meghna river discharge is taken into account. The coastal and island boundaries are approximated through proper stair steps. The model equations are solved by a semi-implicit finite difference technique using a staggered C-grid. A stable appropriate tidal condition over the model domain is generated by applying tidal forcing with the four major tidal constituents M 2, S 2, K 1, and O 1 along the southern open boundary of the CMS. This tidal regime is introduced as the initial state of the sea for nonlinear interaction of tide and surge. The model is applied to simulate water levels due to the interaction of tide and surge associated with the cyclones April 1991 and Aila at different coastal and island locations along the coast of Bangladesh. The results are found to be quite satisfactory with root mean square error of ~0.50 m as calculated for both the storm events. Tests of sensitivities on water levels are carried out for air bubbles, offshore islands, river discharge, inverse barometer, and grid resolution. The presence of air bubbles increases simulated water levels a little bit in our model, and the contribution of air bubbles in increasing water level is found around 2 %. Further, water levels are found to be influenced by offshore islands, river discharge, inverse barometer as well as grid resolution.  相似文献   
25.
Electrical imaging or electrical tomography is a survey technique suitable for the investigation of areas of shallow complex geology, where the use of other electrical and electromagnetic techniques is less effective. An electrical image has been delineated at a site located in front of the Department of Geological Sciences, Jahangirnagar University, Dhaka, Bangladesh. 16 soil samples were collected from two boreholes located on the image line and geotechnical parameters such as unit weight, water content, grain size, plastic limit, liquid limit and plasticity index were measured in the laboratory. These geotechnical parameters were compared with the measured electrical resistivity.  相似文献   
26.
Acta Geochimica - In this study, we investigated the chemical composition of dissolved solids in the Ca River basin, North-Central Vietnam. Water samples were collected from August 2017 to July...  相似文献   
27.
The Ganga River plays a major role in the transfer of materials from the Indian sub-continent to the Bay of Bengal, both in dissolved and particulate forms. To understand the present elemental dynamics of the Ganga River system, it is important to assess the hydrogeochemical contribution of its tributaries. In this paper, we present an updated database on dissolved and particulate fluxes and denudation rates of the Himalayan tributaries of the Ganga River (Ramganga, Ghaghara, Gandak and Kosi). Dissolved trace element concentrations, their fluxes and suspended sediment-associated elemental fluxes of the Himalayan tributaries have been reported for the first time. Total dissolved flux of the Ramganga, Ghaghara, Gandak and Kosi was estimated as 4, 19.1, 10.3 and 8.8 million tons year?1 accounting for ~?5.7, ~?27.3, ~?14.7 and ~?12.6%, respectively, of the total annual dissolved load carried by the Ganga River. The total particulate flux of the Ramganga, Ghaghara, Gandak and Kosi was computed as 8.2, 81.6, 30.9 and 19.5 million tons year?1, respectively. Compared to earlier studies, we have found a significant increase in the total dissolved flux and chemical denudation rate of the studied tributaries. The estimated particulate fluxes were found to be low in comparison to the previous studies. We suggest that a significant increase in the dissolved fluxes and a decrease in the particulate fluxes are an indication of the increasing anthropogenic disturbances in the catchment of these tributaries.  相似文献   
28.
Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040–2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21 Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins’ hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.  相似文献   
29.
30.
The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO3, Cl, SO4 and NO3) and metals concentrations (27Al, 75As, 138Ba, 9Be, 111Cd, 59Co, 63Cu, 52Cr, 57Fe, 55Mn, 60Ni, 208Pb, 80Se, 66Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号