首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   14篇
  国内免费   17篇
测绘学   13篇
大气科学   45篇
地球物理   82篇
地质学   278篇
海洋学   40篇
天文学   30篇
综合类   14篇
自然地理   18篇
  2023年   6篇
  2022年   34篇
  2021年   33篇
  2020年   15篇
  2019年   25篇
  2018年   31篇
  2017年   47篇
  2016年   46篇
  2015年   25篇
  2014年   35篇
  2013年   51篇
  2012年   28篇
  2011年   15篇
  2010年   15篇
  2009年   17篇
  2008年   15篇
  2007年   12篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
排序方式: 共有520条查询结果,搜索用时 31 毫秒
511.
This study assessed arsenic health risk to the local residents through oral and dermal exposure pathways of drinking water and to investigate source apportionment of groundwater pollutants using multivariate statistical techniques in the Chapai-Nawabganj district, Bangladesh. Groundwater samples collected from shallow tube well and dug well at the depth ranges (15-60 m) were analyzed for physio-chemical parameters and trace elements. Most of the studied physio-chemical parameters were found within their respective permissible limits. However, total As, Fe and Mn concentrations exceeded Bangladesh and WHO guideline values. The assessment of arsenic health risk reveals that children as compared to adults are found at a higher risk as the values of hazard quotients (HQ) >1 in the most of the groundwater samples. This level of arsenic contamination should have medium to high chronic risk and medium carcinogenic risk when compared with US EPA guidelines which can cause serious health hazard. The results of principal component analysis (PCA) and factor analysis (CA) indicate that geogenic (interaction of water and basement rock) and anthropogenic (agrochemicals, agricultural fertilizer and domestic sewage) sources are responsible for variation in arsenic and other physio-chemical parameters in the groundwater aquifer of the study area. Furthermore,the inter-correlation of arsenic with metals and ions were also calculated by correlation matrix and linear regression analysis. The outcomes of this study will help to meet the challenge of sustainable groundwater quality management in Bangladesh and enhancing better vision of potential health risk of local inhabitants in the study area.  相似文献   
512.
The study analyzes drought using Standardized Precipitation Index (SPI) and Mann-Kendall (MK) Trend Test in the context of the impacts of drought on groundwater table (GWT) during the period 1971-2011 in the Barind area, Bangladesh. The area experienced twelve moderate to extreme agricultural droughts in the years 1972, 1975, 1979, 1982, 1986, 1989, 1992, 1994, 2003, 2005, 2009 and 2010. Some of them coincide with El Niño events. Hydrological drought also occurred almost in the same years. However, relationship between all drought events and El Niño is not clear. Southern and central parts of the area frequently suffer from hydrological drought, northern part is affected by agricultural drought. Trends in SPI values indicate that the area has an insignificant trend towards drought, and numbers of mild and moderate drought are increasing. GWT depth shows strong correlation with rainy season SPI values such that GWT regaining corresponds with rising SPI values and vice versa. However, 2000 onwards, GWT depth is continuously increasing even with positive SPI values. This is due to over-exploitation of groundwater and changes in cropping patterns. Agricultural practice in Barind area based on groundwater irrigation is vulnerable to drought. Hence, adaptation measures to minimize effects of drought on groundwater ought to be taken.  相似文献   
513.
We study the margin of South East Deccan Volcanic Province around Kinwat lineament, Maharashtra, India, which is NW extension of the Kaddam Fault. Structural field studies document \(\sim \)E–W strike-slip mostly brittle faults from the basement granite. We designate this as ‘Western boundary East Dharwar Craton Strike-slip Zone’ (WBEDCSZ). At local level, the deformation regime from Kinwat, Kaddam Fault, micro-seismically active Nanded and seismically active Killari corroborate with the nearby lineaments. Morphometric analyses suggest that the region is moderately tectonically active. The region of intense strike-slip deformation lies between seismically active fault along Tapi in NW and Bhadrachalam in the SE part of the Kaddam Fault/lineament. The WBEDCSZ with the surface evidences of faulting, presence of a major lineaments and intersection of faults could be a zone of intraplate earthquake.  相似文献   
514.
Artificial intelligence (AI) techniques have increasingly become efficient alternative modeling tools in the water resources field, particularly when the modeled process is influenced by complex and interrelated variables. In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salinity sources. Both models were trained using 11 years of groundwater quality data from 22 municipal wells in Khan Younis Governorate, Gaza, Palestine. Both techniques showed satisfactory prediction performance, where the mean absolute percentage error (MAPE) and correlation coefficient (R) for the test data set were, respectively, about 4.5 and 99.8% for the ANNs model, and 4.6 and 99.7% for SVM model. The performances of the developed models were further noticeably improved through preprocessing the wells data set using a k-means clustering method, then conducting AI techniques separately for each cluster. The developed models with clustered data were associated with higher performance, easiness and simplicity. They can be employed as an analytical tool to investigate the influence of input variables on coastal aquifer salinity, which is of great importance for understanding salinization processes, leading to more effective water-resources-related planning and decision making.  相似文献   
515.
Urban growth is an important phenomenon, which is taking place on an unprecedented scale, and its impacts on society and the environment are evident. In theory, an evaluation of such urban growth through scenario-based planning helps planners to better assess the future impacts of growth and develop better policies and plans. Within this context, the assessment of transport impacts is particularly important as transport plays an important role in shaping urban growth. Additionally, transport sector alone is responsible for about one-third of the greenhouse gas emissions of cities, which has detrimental effects on the environment, economy, community health, and quality of life. In practice, however, scarce evidence exists outlining the challenges of scenario-based evaluation and how to best address these while modelling the transport impacts of various urban growth scenarios. This research addresses these gaps in the literature and assesses the effectiveness of scenario-based planning methods that are used for modelling the transport impacts of alternative urban growth scenarios. The methodological approach of the study consists of a critical review of the key literature and relevant methods that are commonly used to assess transport impacts. The results of this analysis highlight limitations of existing methods for effectively evaluating transport externalities of urban growth scenarios. The findings suggest that among many reviewed models, the ILUTE, URBANSIM and TRANUS simulation models are identified as significant ones. However, due to various limitations of the former two, TRANUS is noted as the most suitable one for evaluating the transport impacts of urban growth scenarios.  相似文献   
516.
517.
Bangladesh is one of the most vulnerable countries to natural disasters such as droughts in the world. The pre-monsoon Aus rice in Bangladesh depends on rainfall and is threatened by increasing droughts. However, limited information on the changes in Aus rice as well as droughts hamper our understanding of the country’s agricultural resilience and adaption to droughts. Here, we collected all the official statistical data of Aus rice at the district level from 1980 to 2018, and examined the inter...  相似文献   
518.
Due to the severity of arsenic contamination of soil and water resources around the world, finding new adsorbents for arsenic removal from the water is of high importance. The present study investigates the possible use and effectiveness of starch-stabilized Fe/Cu nanoparticles for adsorption of arsenic from aqueous solutions. First, Fe/Cu nanoparticles at various starch concentrations of 0, 0.02, 0.04 and 0.06 wt% were synthesized and characterized by X-ray diffraction, transmission electron microscopy and zeta potential/particle size analyzer. Then 0.04 wt% stabilized Fe/Cu nanoparticles were tested for the sorption of As(III) and As(V) from synthetic arsenic-contaminated water. To have an understanding about the arsenic adsorption mechanism of nanoparticles, X-ray photoelectron spectroscopy (XPS) was performed before and after adsorption. The results showed that starch provides nanoparticles with a neutral surface and stabilization of nanoparticles is possible with 0.04 wt% or higher concentrations of starch. For 0.04 wt% starch-stabilized Fe/Cu nanoparticles, the adsorption isotherms fit well within the Langmuir equation, with maximum sorption capacities of 90.1 mg/g for As(III) and 126.58 mg/g for As(V) at a pH of 7.0 from the aqueous arsenic solutions. Examining the XPS spectra of nanoparticles before and after adsorption showed that arsenic adsorption by this nanoparticle can be due to the formation of inner-sphere arsenic complexes on the particle surface, and the surface oxygen-containing functional groups involved in adsorption. The high sorption capacity suggests the potential for applying starch-stabilized Fe/Cu nanoparticles to the contaminated waters for removal of arsenic.  相似文献   
519.
Acid mine drainage (AMD) is one of the severe environmental problems that coal mines are facing. Generation of AMD in the northeastern part of India due to the coal mining activities has long been reported. However detailed geochemical characterization of AMD and its impact on water quality of various creeks, river and groundwater in the area has never been reported. Coal and coal measure rocks in the study area show finely disseminated pyrite crystals. Secondary solid phases, resulted due to oxidation of pyrite, occur on the surface of coal, and are mainly consisting of hydrated sulphate complexes of Fe and Mg (copiapite group of minerals). The direct mine discharges are highly acidic (up to pH 2.3) to alkaline (up to pH 7.6) in nature with high concentration of SO42−. Acidic discharges are highly enriched with Fe, Al, Mn, Ni, Pb and Cd, while Cr, Cu, Zn and Co are below their maximum permissible limit in most mine discharges. Creeks that carrying the direct mine discharges are highly contaminated; whereas major rivers are not much impacted by AMD. Ground water close to the collieries and AMD affected creeks are highly contaminated by Mn, Fe and Pb. Through geochemical modeling, it is inferred that jarosite is stable at pH less than 2.5, schwertmannite at pH less than 4.5, ferrihydrite above 5.8 and goethite is stable over wide range of pH, from highly acidic to alkaline condition.  相似文献   
520.
The present research deals with the geochemical characteristics of the Holocene sediments from Alamdanga area, Chuadanga district, Bangladesh. Main goals of the study are to delineate source rock characteristics, degree of chemical weathering and sorting processes and behavior of redox conditions during deposition of the sediments. Geochemical characteristics of the sediments show comparatively a wide variation in accordance with stratigraphy in their major element contents (e.g. SiO2 69.46-82.13, A1203 2.28-8.88 in wt%), reflecting the distinctive provenance and in part an unstable period in terms of tectonic activity. Geochemical classification of the sediments shows mostly sub-arkose with few sub-litharenites. Some major and trace elements display comprehensible correlation with A1203 confirming their possible hydraulic fraetionation. The chemical index of alteration (CIA*), W* index, index of compositional variability (ICV), plagioclase index of alteration (PIA*) values and the ratio of SIO2/Al2O3, suggest low degrees of chemical weathering in the source areas as well as immature to moderately mature the sediments. The sediments suggest semi-arid climatic trends within oxic deltaic depositional conditions during the Holocene, at 3-12 ka. Whole rock geochemistry and discrimination diagrams demonstrate the continental signature derivatives, which might have been derived from the felsic to intermediate igneous rocks (granitic plutonic rocks) as well as from quartzose sedimentary/metamorphic provenance. These typical sources are present in a vast region of the Himalayan belt and catchment areas of Ganges. The tectonic setting of the sediments demarcates typically passive margin with slightly continental arc system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号