首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28002篇
  免费   779篇
  国内免费   281篇
测绘学   588篇
大气科学   1787篇
地球物理   6281篇
地质学   11035篇
海洋学   2494篇
天文学   5585篇
综合类   226篇
自然地理   1066篇
  2022年   269篇
  2021年   441篇
  2020年   399篇
  2019年   472篇
  2018年   1367篇
  2017年   1234篇
  2016年   1129篇
  2015年   513篇
  2014年   872篇
  2013年   1403篇
  2012年   1531篇
  2011年   1500篇
  2010年   1168篇
  2009年   1338篇
  2008年   1153篇
  2007年   1326篇
  2006年   1185篇
  2005年   1382篇
  2004年   1396篇
  2003年   1176篇
  2002年   730篇
  2001年   577篇
  2000年   452篇
  1999年   348篇
  1998年   327篇
  1997年   344篇
  1996年   263篇
  1995年   262篇
  1994年   237篇
  1993年   182篇
  1992年   209篇
  1991年   190篇
  1990年   205篇
  1989年   192篇
  1988年   157篇
  1987年   186篇
  1986年   170篇
  1985年   208篇
  1984年   198篇
  1983年   198篇
  1982年   188篇
  1981年   173篇
  1980年   165篇
  1979年   182篇
  1978年   159篇
  1977年   143篇
  1976年   136篇
  1975年   140篇
  1974年   125篇
  1973年   167篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
141.
This paper describes a new procedure for assessing the ratio between in situ stresses in rock masses by means of K (K = σH / σv, being σH and σv principal stress) and tectonics for purposes of engineering geology and rock mechanics. The method combines the use of the logic decision tree and the empirical relationship between the Tectonic Stress Index, TSI, and a series of K in situ values obtained from an extensive database. The decision tree considers geological and geophysical factors affecting stress magnitudes both on the regional and local scale. The TSI index is defined by geological and geomechanical parameters. The method proposed provides an assessment of the magnitude of horizontal stresses of tectonic origin. Results for several regions of Europe are presented and the possible applications of the procedure are discussed.  相似文献   
142.
The paper reports data on rock and mineral compositions from the Svyatonosskaya Formation, which is a continuation of the Ol’khon Series in the northern part of the Svyatoi Nos Peninsula, eastern shore of Lake Baikal. The pyroxene-amphibole-plagioclase schists (metagabbro) are replaced there by the garnet-biotite-quartz assemblage, which was formed, according to the data of various geothermometers and calculations by the THERMOCALC computer program, under conditions corresponding to the transition from the granulite (848–811°C) to high grades of the amphibolite (715–670°C) facies under high pressures (8.7 ±1.6 kbar). In petrogenetic grids, these conditions fall onto the line of the onset of eclogitization. In nature these rocks are a continuation of the Chernorudskaya-Barakchinskaya zone of elevated pressures in the Ol’khon area. The metasomatic rocks were formed simultaneously with strike-slip faulting, when coupled zones of relatively high-(eclogite-like) and low-pressure (quartzite-marble melange) developed at the inflow of SiO2 and K2O and the removal of MgO and CaO. Analogous compositional changes in gneisses and schists in tectonic extension zones in Ol’khon Island and neighboring areas occurred during the development of migmatites. The migmatization of the gneisses was likely coupled with the garnetization of mafic schists in high-pressure zones and the formation of eclogite-like rocks replacing marbles. The accompanying graphitization of this block suggests that the metasomatic fluid had a hydrocarbon-hydrogen composition.  相似文献   
143.
This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.  相似文献   
144.
Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal   总被引:1,自引:0,他引:1  
This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.  相似文献   
145.
The investigation of melt inclusions in the minerals of volcanic rocks from the massive sulfide deposits of Siberia and the Urals revealed some specific features in the development of their magmatic ore systems. It was shown that the petrochemical and rare earth element compositions of melt inclusions reflect the geodynamic conditions of their formation: island arc conditions for the massive sulfide deposits of Rudny Altai, eastern Tuva, and the Salair Range and a back arc basin environment for the Yaman-Kasy deposit. The silicic melts of inclusions from the volcanic rocks of massive sulfide deposits show some specific features with respect to the contents of volatile components. In all of the ore deposits studied, fluorine content was always low (0.03–0.08 wt %), whereas chlorine content (0.13–0.28 wt %) was higher than the average value for silicic melts (0.17 wt %). There is a strong differentiation of water content in melt inclusions, both between deposits and between various volcanics from a single deposit. Ore-bearing melts show the highest water contents of 3.34–4.07 wt %. High Cu contents in the silicic melts of the Yubileinoe and Kyzyl-Tashtyg deposits (up to 7118 and 3228 ppm, respectively) may indicate the affinity of some ore components to particular silicic magmas. This is supported by the elevated contents of Cu in the porphyry Cu deposits of Romania (Valea Morii), Mongolia (Bayan Ula), and Bolivia. On the other hand, the silicic melts of inclusions from the molybdenum-uranium deposit of the Strel’tsovka ore field show high contents of another group of ore components (U and F).  相似文献   
146.
The Fe- and Al-rich metapelite of the Teiskaya Group in the trans-Angara part of the Yenisei Range are characterized by variable P-T parameters of their metamorphism. Geochemical data on these rocks were used to reproduce the nature and composition of their protolith. The metapelites were determined to be redeposited and metamorphosed Precambrian weathering crusts of the kaolinite type, which were produced by the erosion of Archean rocks of predominantly acid (granitoid) composition in shallow-water continental-margin basins in a humid climate. These results are consistent with the results of the lithological-facies analysis and geodynamic reconstruction of the Precambrian geological evolution of complexes in the Yenisei range. Differences were revealed between the REE patterns in metapelites in various metamorphic zones caused by both the compositional heterogeneity of the protoliths and the prograde (in terms of pressure) mineral reactions of collision metamorphism with the predominant effects of various processes during different evolutionary stages.  相似文献   
147.
Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite–gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative δ18O whole-rock values (+0.2 to −3.4‰), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest δ18O values (−2.8, −4.2, −4.4 and −7.6‰, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic δ18O values up to the anatectic zone, where the values are lower and more heterogeneous. Low δ18O values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
148.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   
149.
We have determined the metallographic cooling rates for 13 IVA irons using the most recent and most accurate metallographic cooling rate model. Group IVA irons have cooling rates that vary from 6600 °C/Myr at the low-Ni end of the group to 100 °C/Myr at the high-Ni end of the group. This large cooling rate range is totally incompatible with cooling in a mantled core which should have a uniform cooling rate. Thermal and fractional crystallization models have been used to describe the cooling and solidification of the IVA asteroid. The thermal model indicates that a metallic body of 150 ± 50 km in radius with less than 1 km of silicate on the outside of the body has a range of cooling rates that match the metallographic cooling rates in IVA irons in the temperature range 700-400 °C where the Widmanstätten pattern formed. The fractional crystallization model for Ni with initial S contents between 3 and 9 wt% is consistent with the measured variation of cooling rate with bulk Ni and the thermal model. New models for impacts in the early solar system and the evolution of the primordial asteroid belt allow us to propose that the IVA irons crystallized and cooled in a metallic body that was derived from a differentiated protoplanet during a grazing impact. Other large magmatic iron groups, IIAB, IIIAB, and IVB, also show significant cooling rate ranges and are very likely to share a similar history.  相似文献   
150.
We have collected ∼500 stream waters and associated bed-load sediments over an ∼400 km2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into “dissolved” (<0.45 μm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm]NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/Ce]NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu]NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm]NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/Yb]NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce]NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu]NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm]NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb]NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced.The partial extraction recovered, on average ∼20% of the Fe in the total sediment, ∼80% of the Mn, and 21-29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号