首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   5篇
测绘学   1篇
大气科学   6篇
地球物理   36篇
地质学   40篇
海洋学   25篇
天文学   19篇
综合类   1篇
自然地理   13篇
  2021年   4篇
  2020年   3篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   10篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1960年   3篇
  1919年   1篇
排序方式: 共有141条查询结果,搜索用时 172 毫秒
11.
A sediment core representing the past two millennia was recovered from Stella Lake in the Snake Range of the central Great Basin in Nevada. The core was analyzed for sub-fossil chironomids and sediment organic content. A quantitative reconstruction of mean July air temperature (MJAT) was developed using a regional training set and a chironomid-based WA-PLS inference model (r2jack = 0.55, RMSEP = 0.9°C). The chironomid-based MJAT reconstruction suggests that the interval between AD 900 and AD 1300, corresponding to the Medieval Climate Anomaly (MCA), was characterized by MJAT elevated 1.0°C above the subsequent Little Ice Age (LIA), but likely not as warm as recent conditions. Comparison of the Stella Lake temperature reconstruction to previously published paleoclimate records from this region indicates that the temperature fluctuations inferred to have occurred at Stella Lake between AD 900 and AD 1300 correspond to regional records documenting hydroclimate variability during the MCA interval. The Stella Lake record provides evidence that elevated summer temperature contributed to the increased aridity that characterized the western United States during the MCA.  相似文献   
12.
Acoustic reflection signatures of four hydro-carbon seeps were classified using near-bottom 25-kHz echosounder profiles. Echo patterns were compared with ground-truth data obtained by submersible observations and shallow coring. Six echo types were distinguished: strong reflections from (1)?exposed or (2)?buried hard substrates, such as authigenic carbonate or gas hydrate; acoustic scattering in (3)?unlayered or (4)?layered sediments owing to gas, shells, or disseminated carbonates; (5)?attenuation caused by gas; and (6)?undisturbed sediments. Echo type distributions suggest that high spatial variability indicates a younger, vigorous seep, whereas extensive hard substrate implies an older, encrusted seep.  相似文献   
13.
14.
15.
Isolated patches ofSpartina anglica (cordgrass) at two sites on a wave-exposed mid-intertidal flat of the 340 km2 Manukau Harbor (Auckland, New Zealand) have developed very differently since being planted in the mid-1970s. Although the two sites are only 0.5 km apart and at the same intertidal elevation,Spartina patches at the easternmost site (site 1) have as much as an order of magnitude higher biomass and accumulated sediment volume thanSpartina patches at site 2. A field experiment was conducted to characterize waves and associated sediment dynamics at each site, which might explain whySpartina patches at the two sites have developed so differently over the past 25 yr or so. Suspended sediments were measured and wave characteristics were inferred from subsurface pressure data measured for 5 wk at bothSpartina sites and at an intermediate location. Bed-orbital speeds and frictional wave-energy dissipation were consistently lower at the easternmost site with the largerSpartina patches. The west-to-east reduction in wave energy is due to the spatial arrangement of theSpartina sites relative to the predominant wind fetches. The wave-energy gradient is maintained by tidal-cycle variations in fetch and bed friction and results in a west-to-east reduction in sand suspension. Silt, which is largely resuspended under southwest winds, is redeposited in the low wave-energy conditions in and around the larger site 1Spartina patches. Shell accumulation bySpartina patches at site 1 occurs infrequently, during southwest winds >10 m s−1 and water depths >0.7 m, when waves are least attenuated by bed friction. Large between-site differences in the growth of and sediment accumulation by theSpartina patch are consistent with the observed wave-energy gradient. The resulting spatial patterns of silt, sand, and shell resuspension and deposition directly influence the rate of sediment accumulation bySpartina patches and the composition of accumulated sediment on this wave-exposed intertidal flat.  相似文献   
16.
17.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
18.
 Acoustic reflection signatures of four hydro-carbon seeps were classified using near-bottom 25-kHz echosounder profiles. Echo patterns were compared with ground-truth data obtained by submersible observations and shallow coring. Six echo types were distinguished: strong reflections from (1) exposed or (2) buried hard substrates, such as authigenic carbonate or gas hydrate; acoustic scattering in (3) unlayered or (4) layered sediments owing to gas, shells, or disseminated carbonates; (5) attenuation caused by gas; and (6) undisturbed sediments. Echo type distributions suggest that high spatial variability indicates a younger, vigorous seep, whereas extensive hard substrate implies an older, encrusted seep. Received: 29 May 1998 / Revision received: 7 October 1998  相似文献   
19.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   
20.
The Indo-Gangetic aquifer is one of the world’s most important transboundary water resources, and the most heavily exploited aquifer in the world. To better understand the aquifer system, typologies have been characterized for the aquifer, which integrate existing datasets across the Indo-Gangetic catchment basin at a transboundary scale for the first time, and provide an alternative conceptualization of this aquifer system. Traditionally considered and mapped as a single homogenous aquifer of comparable aquifer properties and groundwater resource at a transboundary scale, the typologies illuminate significant spatial differences in recharge, permeability, storage, and groundwater chemistry across the aquifer system at this transboundary scale. These changes are shown to be systematic, concurrent with large-scale changes in sedimentology of the Pleistocene and Holocene alluvial aquifer, climate, and recent irrigation practices. Seven typologies of the aquifer are presented, each having a distinct set of challenges and opportunities for groundwater development and a different resilience to abstraction and climate change. The seven typologies are: (1) the piedmont margin, (2) the Upper Indus and Upper-Mid Ganges, (3) the Lower Ganges and Mid Brahmaputra, (4) the fluvially influenced deltaic area of the Bengal Basin, (5) the Middle Indus and Upper Ganges, (6) the Lower Indus, and (7) the marine-influenced deltaic areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号