首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14334篇
  免费   1572篇
  国内免费   1504篇
测绘学   687篇
大气科学   1988篇
地球物理   4155篇
地质学   5791篇
海洋学   1327篇
天文学   1445篇
综合类   706篇
自然地理   1311篇
  2023年   141篇
  2022年   350篇
  2021年   501篇
  2020年   447篇
  2019年   432篇
  2018年   852篇
  2017年   702篇
  2016年   824篇
  2015年   627篇
  2014年   760篇
  2013年   873篇
  2012年   726篇
  2011年   804篇
  2010年   758篇
  2009年   753篇
  2008年   686篇
  2007年   580篇
  2006年   502篇
  2005年   406篇
  2004年   398篇
  2003年   350篇
  2002年   329篇
  2001年   310篇
  2000年   269篇
  1999年   366篇
  1998年   401篇
  1997年   350篇
  1996年   341篇
  1995年   263篇
  1994年   239篇
  1993年   190篇
  1992年   182篇
  1991年   146篇
  1990年   174篇
  1989年   125篇
  1988年   104篇
  1987年   105篇
  1986年   88篇
  1985年   75篇
  1984年   78篇
  1983年   55篇
  1982年   62篇
  1981年   66篇
  1980年   52篇
  1979年   40篇
  1978年   39篇
  1977年   41篇
  1976年   39篇
  1974年   42篇
  1971年   40篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
11.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
12.
本文运用带通滤波分析方法,对四川省1981年7月由西南低涡等天气系统引起的大暴雨过程作了地面气象要素场的中尺度诊断分析。结果表明,带通滤波后的场具有明显的中尺度特征,其中一些物理量场的适当配置与6小时后的暴雨中心有较好的对应关系。说明了此带通滤波方法在实际业务预报中具有一定的使用价值。  相似文献   
13.
A radiative seasonal model which incorporates a multilayer radiative transfer treatment at wave-lengths longward of 7 μm is presented and applied to Saturn's stratosphere. Opacities due to H2-He, CH4, C2H2, and C2H6 are included. Season-dependent insolation is shown to produce a strong hemispheric asymmetry decreasing with depth at the Voyager encounter times, and seasonal amplitudes of 30°K at the poles are predicted in the high stratosphere. The ring-modulated dependence of the insolation and the orbital eccentricity are shown to have a significant effect. Calculations agree closely with the Voyager 1 and 2 radio occultation ingress profiles recorded at 76°S and 36.5°S for CH4/H2 = 3.5 + 1.4/? 1.0 × 10?3;the estimated errors include modeling systematic errors and uncertainties in the occultations profiles. The possible role of aerosols in the stratospheric heating is analyzed. The Voyager 2 egress profile recorded at 31°S cannot be reproduced by calculations. Some constraints on the C2H2 and C2H6 abundances are derived. The upper portion of the occultation profiles (p < 3mbar) can be matched for C2H2/H2 = 1.0 + 1.3/?0.6 × 10?7, C2H6/H2 = 1.5 + 1.8/?0.9 × 10?6 at 76°S and C2H2/H2 = 4 + 6/?4 × 10?8, C2H6/H2 = 6 + 9/?6 × 10?7 at 36.5°N. At the northern occultation latitude, the discrepancy with the concentrations derived from analysis of IRIS spectra by R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel (1984, Astrophys. J.287) can be explained by a sharp variation of the mixing ratios of these gases with altitude in the upper stratosphere. Other interpretations are discussed.  相似文献   
14.
After the survey of pollution sources, a study on surface water quality assessment and forecast is given by means of grey system method, fuzzy mathematical method and multiple-index method. Based on it, aquatic environment quality features, treatment measures and environmental strategies of the area are proposed. The quality of aquatic environment of 5 rivers in the Tumen River area is studied. The results show that the pollution of surface water is serious; water quality of most rivers is between grade IV and V except the Hunchun River, being higher than grade IV standard; pollution levels of most rivers have been basically controlled except the of Burhatong River, which is deteriorating gradually. Pollutants of the rivers are comparatively regular, mainly are SS, COD, BOD, AR-OH, NH3-N. The main pollution trades are chemical fibre industry, pulp and paper making industry and mining industry. If the growth rate of gross industrial product is higher than 25 percent under the encouraging-model of regional exploitation, the pollutants’ load will overtake the bearing capacity of aquatic environment. Thus some protection program against pollution must be worked out in order to achieve the harmonious development of economy society and environment. A project from “Studies on Earlier Stage of Regional Development” of the Chinese Academy of Sciences  相似文献   
15.
从桐柏─大别山成矿带区域地质、地球物理、地球化学特征的研究入手,分析与金成矿有关的地层、构造、岩浆岩等控矿因素的地球物理场及地球化学特征;建立区域金矿找矿模型。  相似文献   
16.
Abstract— The Monahans H‐chondrite is a regolith breccia containing light and dark phases and the first reported presence of small grains of halite. We made detailed noble gas analyses of each of these phases. The 39Ar‐40Ar age of Monahans light is 4.533 ± 0.006 Ma. Monahans dark and halite samples show greater amounts of diffusive loss of 40Ar and the maximum ages are 4.50 and 4.33 Ga, respectively. Monahans dark phase contains significant concentrations of He, Ne and Ar implanted by the solar wind when this material was extant in a parent body regolith. Monahans light contains no solar gases. From the cosmogenic 3He, 21Ne, and 38Ar in Monahans light we calculate a probable cosmic‐ray, space exposure age of 6.0 ± 0.5 Ma. Monahans dark contains twice as much cosmogenic 21Ne and 38Ar as does the light and indicates early near‐surface exposure of 13–18 Ma in a H‐chondrite regolith. The existence of fragile halite grains in H‐chondrites suggests that this regolith irradiation occurred very early. Large concentrations of 36Ar in the halite were produced during regolith exposure by neutron capture on 35Cl, followed by decay to 36Ar. The thermal neutron fluence seen by the halite was (2–4) × 1014 n/cm2. The thermal neutron flux during regolith exposure was ~0.4‐0.7 n/cm2/s. The Monahans neutron fluence is more than an order of magnitude less than that acquired during space exposure of several large meteorites and of lunar soils, but the neutron flux is lower by a factor of ≤5. Comparison of the 36Arn/21Necos ratio in Monahans halite and silicate with the theoretically calculated ratio as a function of shielding depth in an H‐chondrite regolith suggests that irradiation of Monahans dark occurred under low shielding in a regolith that may have been relatively shallow. Late addition of halite to the regolith can be ruled out. However, irradiation of halite and silicate for different times at different depths in an extensive regolith cannot be excluded.  相似文献   
17.
本文在已有数据处理方法的基础上,利用近代数值逼近理论,给出了从时空域角度描述地壳垂直运动过程的一种具体的函数解析形式。最后给出了一个实际算例。  相似文献   
18.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   
19.
Virtual Huanghe River System: Framework and Technology   总被引:2,自引:0,他引:2  
1 Introduction Huanghe (Yellow) River basin is located in 32°–42°N, 96°–119°E. The area of the catchment is more than 752,000km2. The river is 5464km long with a drop in elevation of 4830m. Among the whole area, the moun- tainous and stone area accounts for 29%, loess and hills area 46%, sandy area 11% and plain area 14%, respec- tively. Different natural landscapes exist in this area. The Huanghe River flows through the Loess Plateau, where the soil is eroded seriously (Wang, 2002;…  相似文献   
20.
Pco2 of air and seawater samples from the East China Sea(ECS) were measured in situ in autumn, 1994,Ocean currents,terrestrial fluviation,biological activities,etc.,Pco2 char-acters in air and seawater were investigated,CO2 flux and its character in the East China Sea are discussed on the basis of the Pco2 profiles of air and seawater,It was clear that the nearshore was the source of CO2;and tht the oulter sea area was the sink of CO2; and that the shelf area of the EXS is a net sink for atmospheric CO2 in autumn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号