We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl. 相似文献
In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed
for a hypothetical repository in the Canadian Shield. The assessment shows that the maximum long term radionuclide release
from such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the
repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical
(THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of
poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field
tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above-mentioned
uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository
safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100°C;
however, the stress on the container can marginally exceed the design value of 15 MPa. However, the most important finding
from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a
few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the
initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect
of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing
systems.
Prepared for publication in Environmental Geology.
DECOVALEX-THMC Special Issue. 相似文献
The contribution of subducted carbonate sediments to the genesis of the Southwestern Colombian arc magmas was investigated using a comprehensive petrography and geochemical analysis, including determination of major and trace element contents and Sr, Nd, Hf and Pb isotope compositions. These data have been used to constrain the depth of decarbonation in the subducted slab, indicating that the decarbonation process continues into the sub-arc region, and ultimately becomes negligible in the rear arc. We propose on the basis of multi-isotope approach and mass balance calculations, that the most important mechanism to induce the slab decarbonation is the infiltration of chemically reactive aqueous fluids from the altered oceanic crust, which decreasingly metasomatize the mantle wedge, triggering the formation of isotopically different primary magmas from the volcanic front (VF) with relatively high 176Hf/177Hf, high 87Sr/86Sr, negative values of εNd and lower Pb isotopes compared to the rear arc (RA).The presence of more aqueous fluids at the volcanic front may increase the degree of decarbonation into carbonate-bearing lithologies. Moreover, with increasing pressure and temperature in the subduction system, the decrease in dehydration of the slab, leads to cessation of fluid-induced decarbonation reactions at the rear arc. This development allows the remaining carbonate materials to be recycled into the deep mantle. 相似文献
Isotopic compositions of potassium and calcium in individual magnetic spherules were determined. No significant anomaly was observed for potassium within twice the statistical error (2σ), although for calcium isotopes enrichments of46Ca,44Ca and42Ca were observed in one spherule. The relative excess of46Ca,44Ca and42Ca in the spherule agrees with the relative yield of spallogenic calcium isotopes observed in iron meteorites. This fact indicates that the enrichment in the calcium isotopes was caused by cosmic ray irradiation of the spherule in outer space. 相似文献
The Richardson number dependence of vertical eddy diffusion coefficients in the western Equatorial Pacific Ocean was examined on the basis of a Microstructure Profiler (MSP) observations during the cruise of Natsushima (JAPACS-89). The Richardson numberRi was estimated by using the mean shear of velocity profile measured by an Acoustic Doppler Current Profiler (ADCP) with the vertical interval of 15 meters within one or two hours of the each MSP cast. The raw data plot of the vertical eddy diffusion coefficientKp shows a large scatter with increasing tendency belowRi=0.5. The relation between the mean vertical eddy diffusion coefficientKp and the Richardson numberRi, averaged over every 0.025 in theRi, supports the model of Pacanowski and Philander (1981) in the range ofRi>0.5, but coincides with the result of Peterset al. (1988) in the range ofRi<0.5. 相似文献
Melting relations of primitive peridotite were studied up to 25 GPa. The change of the liquidus phase from olivine to majorite occurs at 16 GPa. We confirmed the density crossover of the FeO-rich peridotite melt and the equilibrium olivine (Fo90) at 7 GPa. Sinking of equilibrium olivine (Fo95) in the primitive peridotite melt was observed up to 10 GPa. The compression curves of FeO-rich peridotitic and komatiite melts reported in this and earlier work suggest that the density crossover in the Earth's mantle will be located at 11–12 GPa at 2000°C, consistent with an previous estimation by C.B. Agee and D. Walker.
The density crossover can play a key role in the Moon and the terrestrial planets, such as the Earth, Venus and Mars. Majorite and some fraction of melt could have separated from the ascending diapir and sunk downwards at the depths below the density crossover. This process could have produced a garnet-rich transition zone in the Earth's mantle. The density crossover may exist in the FeO-rich lunar mantle at around the center of the Moon. The density crossover which exists at the depth of 600 km in the Martian mantle plays a key role in producing a fractionated mantle, which is the source the parent magmas of the SNC meteorites. 相似文献
The heat needed to melt snow over the Tien Shan mountains and Japanese Islands for 10-day period (TDP) was estimated. Melting curves and a map of snowmelt duration were obtained through the long-term data from 79 stations in the Tien Shan mountains and 20 stations in the Japanese Islands. At high elevations in the mountains, about 40% of the snow melts during penultimate 10 days of snow cover. In the Japanese Islands, about 80% of the snow melts during the last 20 days of snow cover. Over the mountains, 0.13×104 MJ m2 year−1 is needed to melt snow in the northern and western Tien Shan where maximum snow accumulation occurred. The volume of air cooled 10 °C by snowmelt amounted to 4.4×106 km3 year−1 over the Tien Shan mountains and 3×106 km3 year−1 over the Japanese Islands. The most significant impact of snowmelt on air temperature was observed at an elevation of 2500 m in the western and northern Tien Shan. Air that was cooled 10 °C could reach an elevation of 2.1 km day−1. Over the Japanese Islands, energy losses from snowmelt amounted to 0.26×1014 MJ year−1 and the maximum occurred over Honshu Island. The heat loss from snowmelt in the Tien Shan mountains and Japanese Islands amounted to about 2/3 of heat loss in the Eurasian continental plains. 相似文献
Partition coefficients for trace amounts of trivalent ions between artificial single crystals of Mg2SiO4 grown by the Czochralski method and the coexisting melt have been determined by neutron activation analysis. They are found to vary greatly with the amount of visible imperfections in the crystal and slightly with the concentration of the ions in the melt. Plots of the partition coefficients against ionic radius of the trace ions give a pattern which agrees qualitatively with that found in a natural olivine phenocryst-groundmass pair. 相似文献
The Hinode Solar Optical Telescope (SOT) is the first space-borne visible-light telescope that enables us to observe magnetic-field
dynamics in the solar lower atmosphere with 0.2 – 0.3 arcsec spatial resolution under extremely stable (seeing-free) conditions.
To achieve precise measurements of the polarization with diffraction-limited images, stable pointing of the telescope (<0.09 arcsec,
3σ) is required for solar images exposed on the focal plane CCD detectors. SOT has an image stabilization system that uses image
displacements calculated from correlation tracking of solar granules to control a piezo-driven tip-tilt mirror. The system
minimizes the motions of images for frequencies lower than 14 Hz while the satellite and telescope structural design damps
microvibration in higher frequency ranges. It has been confirmed from the data taken on orbit that the remaining jitter is
less than 0.03 arcsec (3σ) on the Sun. This excellent performance makes a major contribution to successful precise polarimetric measurements with 0.2 – 0.3 arcsec
resolution.
K. Kobayashi now at NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA. 相似文献