首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   30篇
测绘学   16篇
大气科学   15篇
地球物理   186篇
地质学   191篇
海洋学   14篇
天文学   96篇
综合类   5篇
自然地理   24篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   23篇
  2017年   27篇
  2016年   40篇
  2015年   32篇
  2014年   34篇
  2013年   29篇
  2012年   27篇
  2011年   17篇
  2010年   23篇
  2009年   27篇
  2008年   22篇
  2007年   22篇
  2006年   12篇
  2005年   14篇
  2004年   4篇
  2003年   5篇
  2002年   12篇
  2001年   3篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1992年   7篇
  1991年   4篇
  1990年   7篇
  1989年   7篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1968年   2篇
  1962年   2篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
541.
Water Resources - The objective of this paper is the assessment of the effect of a multifunctional mid-size retention reservoir on the occurrence of floods and low flows. The study object was...  相似文献   
542.
Astronomy Letters - We propose a method of analyzing the absorption spectra of quasars that allows the physical parameters of absorbing clouds, absorbers, to be roughly estimated: their masses,...  相似文献   
543.
Baszkówka is an equilibrated, apparently low‐shock, unusually porous chondrite. Some earlier studies were undertaken to understand whether the porosity in Baszkówka, and similar porous chondrites, is a relic of a primordial feature or rather the effect of atypical reprocessing on the parent body. Neither of the studies reconstructed the accurate thermal and deformational evolution of chondrites, however, while it is known that shock‐induced compaction is the main means to affect chondritic porosity. Here we use a combination of 3‐D and 2‐D petrographic examination to understand how the evolution of pores correlates with thermal and shock history recorded in the Baszkówka chondrite. The grain framework silicates in Baszkówka contain healed shock fractures—a clear recorder of significant shock process and postshock annealing. Simultaneously, metal grains do not exhibit any preferred orientation or fabric, which would be expected to develop in response to the deformation as recorded by silicates. We interpret this as evidence for re‐agglomeration and annealing of shocked material. Pore spaces in Baszkówka are connected and decorated by fine‐grained plagioclase‐dominated mass and bulky euhedral olivine crystals, which exhibit growth steps on crystal surfaces. The euhedral olivine must have formed owing to the condensation of a vapor, while plagioclase most likely crystallized from melted chondritic matrix. During the shock event, fine‐grained matrix in Baszkówka was melted and vaporized. Vapor expansion added to ballistic velocity led to ejection and opening of the pore spaces. After re‐agglomeration in a hot ejecta blanket the rock was annealed, melted material circulated in created pore spaces and vapor condensed.  相似文献   
544.
The paper analyses long-term variability of wave climate near Poland for the 1958–2002 period. With spectral and cross-spectral analysis, linear regression and singular spectrum analysis the modes of long-term variability were quantified for the most energetic months (November–February). For monthly indices of North Atlantic Oscillation from 1950 until 2006, it was established that the long-term trends of NAO and significant wave height demonstrate a gentle coupling. For Januaries this relationship is strongest and dates back to 1960, for Februaries a certain consistency appears since 1975. For Novembers and Decembers no statistically discernible coupling was found. Thus, the Baltic Sea appears to be the easternmost NAO-affected region, despite its separation from the Atlantic. The hydrodynamic variability also includes a non-trivial oscillation in the January wave energy records with T=8 years. The same periodicity was identified with the multi-channel SSA technique in the long-term shoreline data of a neighboring beach. The study shows that even almost entirely isolated water bodies are becoming exposed to global climatic phenomena and accelerated erosion of sandy beaches, typical for the South Baltic region. On the other hand, the 8-year hydrodynamic cycle can be viewed as the driver of long-term shoreline evolution.  相似文献   
545.
In this paper we show that the anisotropic Kepler problem is dynamically equivalent to a system of two point masses which move in perpendicular lines (or planes) and interact according to Newton’s law of universal gravitation. Moreover, we prove that generalised version of anisotropic Kepler problem as well as anisotropic two centres problem are non-integrable. This was achieved thanks to investigation of differential Galois groups of variational equations along certain particular solutions. Properties of these groups yield very strong necessary integrability conditions.  相似文献   
546.
Three‐dimensional X‐ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pu?tusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase‐rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal‐sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post‐impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal‐rich and sulfide‐rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen‐rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F‐apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.  相似文献   
547.
The Little Ice Age (∼1600–1900 AD) and 20th century sediment accumulation rates in Billefjorden, a subpolar fjord on Svalbard, were reconstructed by applying 210Pb, 137Cs and AMS 14C datings. The modern sediment accumulation rate decreases from more than 0.39 cm y−1 at the fjord head to 0.08 cm y−1 close to the fjord mouth. However, during the Little Ice Age the sediments accumulated at a much lower rate of 0.02 cm y−1 in the central fjord basin. This difference is most likely related to the rapid retreat of glaciers during the 20th century, when most of them withdrew up to 2 km. The post-Little Ice Age increases in temperature and a negative glacier mass balance resulted in a larger meltwater discharge transferring substantial amounts of sediments released from the glaciers, as well as those eroded from previously stored unconsolidated glacial sediments. A comparison of data from the subpolar fjords of Svalbard suggests that the increase in the sediment accumulation rate is a common trend, and further increases might be expected if climate warming continues. The properties of the fjord sediments (grain size, IRD, coarse-fraction composition, clay mineralogy) from the Little Ice Age and the 20th century showed no distinct differences. The change in the accumulation rate may be the most evident sedimentary record of this climatic change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号