首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1504篇
  免费   75篇
  国内免费   10篇
测绘学   41篇
大气科学   116篇
地球物理   363篇
地质学   534篇
海洋学   103篇
天文学   286篇
综合类   7篇
自然地理   139篇
  2021年   26篇
  2020年   24篇
  2019年   30篇
  2018年   34篇
  2017年   36篇
  2016年   39篇
  2015年   45篇
  2014年   43篇
  2013年   71篇
  2012年   55篇
  2011年   76篇
  2010年   87篇
  2009年   72篇
  2008年   92篇
  2007年   59篇
  2006年   61篇
  2005年   61篇
  2004年   41篇
  2003年   53篇
  2002年   63篇
  2001年   34篇
  2000年   14篇
  1999年   20篇
  1998年   21篇
  1997年   20篇
  1996年   23篇
  1995年   20篇
  1994年   19篇
  1993年   22篇
  1992年   11篇
  1990年   10篇
  1989年   13篇
  1988年   11篇
  1987年   17篇
  1986年   10篇
  1985年   21篇
  1984年   15篇
  1983年   20篇
  1982年   21篇
  1981年   19篇
  1980年   15篇
  1979年   13篇
  1978年   15篇
  1977年   11篇
  1976年   10篇
  1975年   8篇
  1974年   7篇
  1973年   15篇
  1971年   9篇
  1970年   8篇
排序方式: 共有1589条查询结果,搜索用时 656 毫秒
891.
892.
Nine glauconite samples with relatively high K concentrations and which appear to be well crystallized using normal X-ray diffraction techniques have been studied using the 40Ar39Ar method. The glauconite 40Ar39Ar apparent ages exceed their KAr, RbSr and, in most cases, stratigraphic ages by substantial amounts. 40Ar39Ar release spectra sometimes yield plateaus but these apparent ages have no geological significance. The results indicate that 39Ar is lost by recoil from mineral grains during neutron irradiation, consistent with previously reported observations. The amount of 39Ar loss was measured by isotope dilution for four samples and varied from 29% to 17%. In contrast, radiogenic 40Ar is quantitatively retained during irradiation. The very fine blades which make up glauconite grains yield the mineral susceptible to large amounts of 39Ar loss and unsuitable for 40Ar39Ar dating.  相似文献   
893.
A dockside experiment was designed at the mouth of the Pascagoula River in Pascagoula, Mississippi, to evaluate corrosion in welded Cu/Ni piping systems. Localized corrosion was shown to be due to the following sequence of events: (1) metal segregation during welding processes, (2) settlemnt of sulfide-producing bacteria in welds, (3) disruption of surface films by turbulence, and (4) formation of adjacent cathodic and anodic areas.  相似文献   
894.
Interstitial water samples from the Guatemala Basin and the coast of Baja California have been analyzed for manganese, iron, copper, nickel and nitrate. The data provide a systematic look at changes in trace metal diagenesis proceeding from red clay to highly reducing nearshore sediments.In red clay sediments, the nitrate concentrations suggest that only aerobic respiration is occurring. Manganese and iron are below detection. Nickel concentrations remain the same as in bottom seawater but copper shows a pronounced maximum just at the sediment/water interface. Proceeding to hemipelagic sediments, denitrification becomes increasingly important and manganese and iron remobilization occur in the sediments.The linear manganese and nitrate profiles suggest regions of production or consumption separated by zones of diffusion. This differs from the conventional picture of a continuous series of reactions within the sediments. Manganese reduction always occurs before iron reduction. The pore water nickel correlates well with manganese in these sediments, suggesting that nickel is associated with MnO2 in the solid phase. The pore water flux ratio of manganese and nickel agrees well with the ratio in solid phase authigenic oxides. Copper still displays a core top concentration maximum as well as a second maximum associated with the remobilized manganese. The calculated ratio of the Cu/C flux ratios support the argument for copper remobilization during organic carbon oxidation. Comparison of the upward and downward diffusive fluxes with the rate of copper buried by sedimentation shows that at least half of the copper buried must be of diagenetic origin and less than 25% of the copper reaching the sediments is buried.  相似文献   
895.
Book review     
  相似文献   
896.
Some geological events occur infrequently but still have a significant impact upon reservoir characteristics. By their very nature, however, it can be difficult to properly estimate the proportions of uncommon events because they may not appear during limited sampling. For example, even with 40 observations and an event proportion of 0.05, there is a 0.13 chance that no events will be observed. We provide some results and guidance concerning methods to estimate proportions when such events are not detected. Two cases are discussed, estimating proportions without errors in identification and estimating proportions when errors may arise. It is well-known that the distribution of possible proportions in the error-free case can be calculated using Bayesian analysis. If one assumes a standard uniform distribution as the prior for the proportion, Bayesian analysis gives a Beta distribution for the posterior. The situation becomes more complicated, however, when detection errors are included; the true proportion has a distribution consisting of several Beta distributions. The difference in results between the error-free and with-error situations can be considerable. For example, when 10 error-free observations are made and no uncommon events are detected, there is a 0.50 chance that the true proportion exceeds 0.06 and a 0.10 chance that it exceeds 0.19. Including the effects of erroneous identifications, however, increases the median proportion to 0.09 and the upper decile to 0.27. We also examine the case where there may be prior geological information, which can be incorporated by amending the prior distribution of the proportion. We find that the use of such a prior makes little difference unless there are very few observations or there are major differences between the anticipated and the observed proportions.  相似文献   
897.
GPS-derived velocities (1993–2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada–Great Valley (SNGV) block toward the coast and the second is the north–northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada–Great Valley block motion is northwest toward the coast, convergent with the more northerly, north–northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada–Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific–SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6–10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada–Great Valley block and growth of the northernmost segments of the San Andreas fault system.  相似文献   
898.
The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present-day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO2 + H2 = CO + H2O). Aqueous fluids containing added CO2, CO, HCOOH, NaHCO3, NaHCOO, and H2 were heated at 150, 200, and 300 °C and 350 bar in flexible-cell hydrothermal apparatus, and the abundances of carbon compounds was monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO2 to CH3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH3OH to CH4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable thermodynamic equilibrium. Reaction of CO2 to CO involves a two-step process in which CO2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 × 106 s−1 and an activation energy of 102 kJ/mol were retrieved from the experimental results for the oxidation of CO to CO2. Reaction rates amongst single carbon compounds during the experiments suggest that ΣCO2 (CO2 + HCO3 + CO32−), CO, ΣHCOOH (HCOOH + HCOO), and CH3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions is strongly dependent on temperature, the total carbon content of the fluid, and host-rock lithology. If crustal residence times following the mixing of high-temperature hydrothermal fluids with cool seawater are sufficiently long, reequilibration of aqueous carbon can result in the generation of additional reduced carbon species such as HCOOH and CH3OH, and the consumption of H2. The present study suggests that abiotic reactions involving aqueous carbon compounds in hydrothermal systems are sufficiently rapid to influence metabolic pathways utilized by organisms that inhabit vent environments.  相似文献   
899.
Burial of organic carbon (OC) in ocean sediments acts as the ultimate long-term sink for both terrestrial and marine carbon, however, the mechanisms controlling the preservation of this carbon are poorly understood. To better understand these mechanisms, we applied solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, along with elemental, stable carbon isotopic (δ13C) and lignin phenol analyses, to size and density fractions of sediments influenced by either mixed terrestrial and marine OC inputs (Washington Coast slope) or dominantly marine inputs (Mexican Margin). Elemental, isotopic and lignin analyses all reveal that within the Washington Coast sediment, the OC mixes linearly between nitrogen-poor and 13C-depleted, lignin-rich OC in the large and light fractions and nitrogen-rich and 13C-enriched, lignin-poor OC in the small and dense fractions, suggesting that this sediment contains a two-component mixture of terrestrial vascular plant- and marine-derived OC. The integral areas of each of seven NMR spectral regions in the different samples trend linearly when plotted versus δ13C signature, with most R2 values of 0.78 or greater, demonstrating that the NMR spectra of the two sources of carbon also mix linearly between the two endmembers. The terrestrial endmember in this sediment appears to be dominated by lignin and black carbon whereas the source of the marine endmember is less clear from the NMR spectra. In contrast, all of the analyses indicate that OC in the Mexican Margin sediment fractions is homogenous and derives almost exclusively from marine sources. It appears that selective preservation of (bio)chemically recalcitrant lignin and black carbon is the primary mechanism of preservation of terrestrial OC, whereas mineral-protection is the dominant mechanism preserving marine OC in the Washington coast sediment. There is little evidence showing that either preservation mechanism functions in the Mexican Margin sediments.  相似文献   
900.
It has been proposed that brines in Phanerozoic sedimentary basins inherited their chemistries and salinities from evaporated paleoseawaters during times when the world oceans were Ca-rich and SO4-poor, such as the Silurian and Devonian. However, the compositions of typical Silurian and Devonian-hosted brines in the Illinois and Michigan basins show significant deviations from calculated Silurian seawater evaporation trends, reflecting instead, diagenetic control of compositions. In addition, brines in many basins show evidence for the dissolution of halite being an important source of salinity in addition to, or instead of, evaporated seawater. As long as there is halite present, generation of salinity could continue to occur long after the deposition of evaporites and the influx of evaporated seawater. Thus, even the concept of assigning an age to a basinal brine is problematic given the dynamics of fluid flow, mixing, and solute transport which can occur in sedimentary sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号