首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   15篇
  国内免费   9篇
测绘学   21篇
大气科学   29篇
地球物理   131篇
地质学   200篇
海洋学   25篇
天文学   83篇
综合类   7篇
自然地理   33篇
  2023年   4篇
  2022年   5篇
  2021年   9篇
  2020年   9篇
  2019年   11篇
  2018年   21篇
  2017年   15篇
  2016年   18篇
  2015年   20篇
  2014年   31篇
  2013年   22篇
  2012年   25篇
  2011年   26篇
  2010年   23篇
  2009年   23篇
  2008年   18篇
  2007年   18篇
  2006年   20篇
  2005年   14篇
  2004年   14篇
  2003年   13篇
  2002年   21篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   10篇
  1997年   3篇
  1996年   15篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1975年   5篇
  1973年   2篇
  1972年   4篇
  1968年   3篇
排序方式: 共有529条查询结果,搜索用时 62 毫秒
101.
102.
正1 Introduction The most valuable for the task of climate reconstruction are the time series with an annual resolution,which allows to reveal natural periodicity and pass to the search for mechanisms of regional and global climatic changes.Bottom sediments of lakes are one of the best climate archives in addition to tree ring series,ice cores etc.  相似文献   
103.
104.
105.
The neotectonic movements on the Balkan Peninsula occurred after the last intense thrusting (Early Miocene), and after the Early — Middle Miocene planation. They were controlled by extensional collapse of the Late Alpine orogen, and by extension behind the Aegean arc, and were influenced by the complicated vertical and horizontal movements in the Pannonian region. The Stara-planina and Dinarian-Hellenic linear neotectonic morphostructures inherited the Alpine orogenic zones (Balkanides and Dinarides-Hellenides) and bounded the Central-Balkan neotectonic region. The linear morphostructures were tilted towards the Pannonian and Euxinian basins and the North-Aegean trough.The Central-Balkan neotectonic region has a complicated block structure (horst-and-graben pattern) dominated by the NNW-SSE Struma and Vardar lineaments, the WNW-ESE Sava and Marica lineaments, and the Middle-Mesta and North Anatolian fault zones. The dominating Serbo-Macedonian neotectonic swell was rifted, and subsided along the Struma and Vardar lineaments. The range of the vertical neotectonic displacements reached a maximum of 3–4 km, and even up to 6 km at the edges of the Pannonian and Aegean basins. The general doming of the region was controlled by the isostatic uplift of a thickened crustal lens (Rhodope Massif) in the southern margin of the Eurasian plate. The collapse of the complicated domal structure began along the main (Struma, Vardar and Marica) lineaments in the central parts of the dome, and continued in the Pliocene and Quaternary along a more external contour bounded by the Stara-planina and Dinarian-Hellenic linear morphostructures.
Zusammenfassung Die neotektonischen Bewegungen der Balkan-Halbinsel begannen nach den letzten intensiven Überschiebungen (frühes Miozän) und nach der frühbis mittelmiozänen Verebnung. Gesteuert wurden die Bewegungen durch den Dehnungskollaps des spätalpinen Orogens, der Dehnung hinter dem Ägäischen Bogen und den komplizierten vertikalen und horizontalen Bewegungen in der pannonischen Region. Die neotektonische Region des Zentralbalkans liegt zwischen den linearen, neotektonischen Morphostrukturen der Strara-planina und der Dinariden-Helleniden. Sie übernahmen die alpidischen Orogenzonen der Balkaniden und Dinariden-Helleniden und wurden zum Pannonischen-, dem Präkarpatischen- und dem Nordägäischen Trog geneigt.Die Region zeigt einen komplizierten Blockaufbau (Horst- und Grabenstrukturen), der von den NNW-SSE streichenden Struma- und Vardar-Lineamenten, von den WNW-ESE verlaufenden Sava- und Marica-Lineamenten und der Mittelmesta- und der Nordanatolischen Bruchzone dominiert war. Die Serbo-mazedonische neotektonische Schwelle war von Bruchspaltenbildung und Absenkung parallel der Struma- und Vardar-Lineamente betroffen. Die Höhe der vertikalen Versatzbeträge erreichte ein Maximum von 3–4 km; an den Rändern des Pannonischen und Ägäischen Beckens sogar mit bis zu 6 km. Die allgemeine Aufwölbung der Region wurde durch isostatische Hebung der verdickten Krustenteile (Rhodopisches Massiv) am Südrand der Eurasischen Platte bedingt. Der Kollaps der komplizierten Domstruktur begann in dessen Zentralteil entlang der Hauptlineamente (Struma-, Vardar- und Marica-Lineament) und setzte sich, während des Pliozäns und Quartärs, in den peripheren Bereichen, parallel zu den äußeren Begrenzungen (Balkaniden, Dinariden-Helleniden) der linearen Morphostrukturen, fort.

Résumé Les mouvements néotectoniques dans la péninsule balkanique ont eu lieu après les derniers charriages d'âge miocène inférieur et la pénéplanation du Miocène inférieur et moyen. Ils ont été régis par l'affaissement extensionnel de l'orogène alpin tardif, par l'extension derrière l'arc égéen et par les mouvements verticaux et horizontaux complexes dans la région panonnienne. La région néotectonique centrebalkanique est située entre les morphostructures néotectoniques linéaires de Stara-Planina et des Dinarides-Hellénides. Celles-ci sont héritées des zones orogéniques alpines des Balkanides et des Dinarides-Hellénides et ont été inclinées vers les bassins panonnien, euxinien et nord-égéen.La région possède une structure en blocs (horsts et grabens) compliquée, dominée par les linéaments NNW-SSE de Struma et du Vardar, les linéaments WNW-ESE de Sava et de Marica et les zones faillées de Moyenne Mesta et d'Anatolie du nord. La ride néotectonique serbo-macédonienne a subi rifting et subsidence au long des linéaments de Struma et du Vardar. Les déplacements néotectoniques verticaux ont atteint 3 à 4 km au maximum, et même 6 km dans les bordures des bassins panonniens et égéen. Le soulèvement en dôme de la région a été provoqué par la montée isostatique d'une portion épaissie de l'écorce (massif du Rhodope) dans la marge méridionale de la plaque eurasiatique. L'affaissement de cette structure en dôme complexe a commencé le long des linéaments principaux (de Struma, Vardar et Marica) dans les parties centrales du dôme et a continué pendant le Pliocène et le Quaternaire le long d'un contour plus externe limité par les morphostructures néotectoniques linéaires de Stara-Planina et dinarohellénique.

( ) -, . , . - . - , - . NNWSSO, WNW-OSO . - . 3–4 , 6 . . ( , ) , , .
  相似文献   
106.
The paper discusses geological, mineralogical, petrographic, and geochemical data on the Ureg Nuur volcanoplutonic association of high-Mg volcanic and subvolcanic rocks located among Vendian–Cambrian accretionary structures in the Mongolian Altay. These rocks have a high potassium alkalinity (K2O/Na2O up to 1.2), are enriched in LILE and Sr, and have negative Zr–Hf and Nb anomalies in multielement spectra; this confirms the suprasubduction type of the source of melts. The geological setting and established age (512.4 ± 6.1 Ma, 39Ar–40Ar dating of biotite phenocrysts) evidence picritic magmatism at the accretionary stage of the development of the Altay fragment of the Paleoasian ocean. This indicates a large igneous province related to a mantle plume.  相似文献   
107.
A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.  相似文献   
108.
The Neoproterozoic olistostromes were first distinguished as a special geological unit in a generalised geological map of the Czech Republic on a scale 1:500,000. The olistostromes represent a tectonic mélange or subaquatic continental slope-slides formed by a mixture of black shales, greywackes, carbonates and shales, forming an extremely inhomogeneous geological environment. The extreme over-limit values of indoor radon (Rn, 222Rn) were first detected during check measurements performed for final building approval by team of the National Radiation Protection Institute in a house situated on bedrock of black shales—lithological component of olistostromes north-eastward from Plzeň. Additional measurements of soil gas Rn performed by the Czech Geological Survey were oriented to cover the whole olistostrome belt extending over 65 × 25 km area NE of Plzeň–Prague general direction. The increased concentrations both of soil gas and indoor Rn were confirmed in the whole extent of Neoproterozoic olistostrome belt compared to neighbouring geological units (Neoproterozoic metasediments on NW and Cambrian Palaeovolcanites and Ordovician sediments on SE). This observation lead to increasing the radon index of olistostromes to medium radon category (from the low one) both in general and detailed Rn index maps. Drawing the attention to this lithological type enables to improve the radon risk prevention for newly built houses and interest of remediation of existing houses not only in the specific area of the Czech Republic, but also in other European countries, where Neoproterozoic olistostromes form the geological basement.  相似文献   
109.
The Pirin-Pangaion Structural Zone occupies the south-western part of the Rhodope Massif. It consists of Proterozoic amphibolite facies metamorphic rocks of the Rhodopian Supergroup, and granitoids of Hercynian, Late Cretaceous and Palaeogene age. The pre-Hercynian structure of the zone is dominated by an interference pattern of three superimposed fold generations of NE-SW and NW-SE trends. These structures are cut by Hercynian granitoids, and the entire complex is affected by late Hercynian or early Alpine conical folds. The zone was overthrusted by the Ogražden and Kroussia Units (Serbo-Macedonian ‘Massif’) along the north-east vergent Mid-Cretaceous Strimon overthrust, and by the Central Rhodope Zone of the Rhodope Massif, along the south-west vergent Meso-Rhodopean Overthrust. With this thrusting event, the Pirin-Pangaion Structural Zone was brought together with the Serbo-Macedonian ‘Massif’ and the Central Rhodope Zone to form the Late Cretaceous Morava-Rhodope Zone, which acted as a ‘plateau’ along the southern edge of the Eurasian plate. Late Cretaceous granitoid magma of crustal origin intruded this zone, whereas north of it the Srednogorie volcanic island arc was the site of igneous activity with magmas originating in the upper mantle. The West Thrace Zone developed as a Palaeocene to Oligocene depression superimposed over the older basement obliquely to the southern periphery of the Rhodope Massif. In the Late Eocene and Early Oligocene, this depression represented a volcanic island arc with mantle-derived basic to intermediate magmas; contemporaneous granitoid magmas formed through crustal melting in the thickened crust of the Rhodope Massif (Pirin and Pangaion Units included). Early Miocene thrusting was most intense in the Pangaion Unit, and was followed by Late Miocene to Quaternary extension.  相似文献   
110.
The attenuation factor QP at the top of the inner core is evaluated by using the amplitude spectral ratio of PKPdf and PKPbc phases observed at African stations (BGCA mostly), from strong deep earthquakes in the Pacific Ocean area. The maximum depth of penetration of the PKPdf phase into the inner core (IC) is roughly 377 km, and the sampled region of IC is centered beneath the Southern Indian Ocean. The derived mean value of QP is 249 ± 31 (95% confidence level) in the frequency range 0.2–2 Hz, where no frequency dependence of attenuation has been reliably observed. By using Student’s t-test, we show that the value is statistically significantly different (with a probability greater than 95%) from other mean values of Q derived by using the same method, for both the western (180 °W to 40 °E) and eastern (40 °E to 180 °E) hemispheres of the IC. The decrease of Q with the radius of the turning point (denoted by rTP), according to QP = 840 − 0.62 rTP, has a moderate statistical support (the R-squared value is 38%). A slightly increase of Q as a function of the angle of the PKPdf path within the inner core with respect to the Earth’s spin axis is observed, in agreement with various investigations performed in the time domain. However, the value of the anisotropy, if any, is suggested to be around 3%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号