首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   10篇
测绘学   2篇
大气科学   17篇
地球物理   23篇
地质学   40篇
海洋学   24篇
天文学   39篇
综合类   1篇
自然地理   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   13篇
  2015年   6篇
  2014年   13篇
  2013年   7篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   12篇
  2008年   8篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1980年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
61.
Interactions between vegetation, flow and sediment are a key ingredient for the development of vegetated islands in highly dynamic, fluvial alpine ecosystems such as the Tagliamento River, north-east Italy. There has been substantial research on factors influencing the establishment of vegetation and feedback mechanisms between vegetation, hydraulic, and geomorphological processes in such environments. This has yielded the development of conceptual models identifying different trajectories of vegetation and landform development from bare gravel to established floodplain forest. Nevertheless, some of the finer-scale processes underpinning such interactions are not well understood and parameterisation concepts that augment our knowledge from process understanding to quantified data and prediction models are not available until now. This paper identifies mechanisms and parameters of vegetation-flow interaction at the individual scale that are reflected at a patch or even at the channel scale. These mechanisms are reviewed from a multi-disciplinary perspective and concepts and analogies are proposed that provide ideas to progress research towards the development of predictive vegetation-flow models. Such models must incorporate both hydraulic and ecological components and this is demonstrated for a simplified force-bending model of Salicaceae seedlings. The development of such models demands advances in the individual disciplines of hydraulics, morphology, plant ecology and biomechanics, which offers many possibilities for multidisciplinary research between these disciplines.  相似文献   
62.
Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role.  相似文献   
63.
Current predictions as to the impacts of climate change in general and Arctic climate change in particular are such that a wide range of processes relevant to Arctic contaminants are potentially vulnerable. Of these, radioactive contaminants and the processes that govern their transport and fate may be particularly susceptible to the effects of a changing Arctic climate. This paper explores the potential changes in the physical system of the Arctic climate system as they are deducible from present day knowledge and model projections. As a contribution to a better preparedness regarding Arctic marine contamination with radioactivity we present and discuss how a changing marine physical environment may play a role in altering the current understanding pertaining to behavior of contaminant radionuclides in the marine environment of the Arctic region.  相似文献   
64.
The purpose of the present paper is to analyse factors controlling total concentration and aqueous speciation of aluminium in the Große Ohe River, using a thermodynamic equilibrium model and a mixing approach. A model compound for humic substances is derived on the basis of the relation between anion deficit and the organic carbon content in the river as well as literature data. An equilibrium speciation model for aluminium is set up, considering this model compound and relevant inorganic solutes. Although the model cannot be verified directly, its results may be viewed as qualitatively correct. Applying the model to measured stream water samples highlights that aqueous speciation of aluminium is mainly controlled by the pH value and discharge and that free aluminium concentrations reach clearly toxic levels during acidic episodes. Comparing measured concentrations of sulfate and H+ and calculated concentrations of Al3+ with solubility curves of gibbsite like minerals and jurbanite clearly shows that total aluminium concentrations are not controlled by equilibria with these mineral phases alone. The observed relationship can be better explained from a mixture of two distinct waters, representing lowflow and highflow chemistry, and the resulting equilibrium concentrations. This indicates that total aluminium concentration, in particular during high discharge events, is mainly controlled by the mixture of waters with differing chemistry and flowpaths.  相似文献   
65.
66.
Conventional evolutionary models for Mars adopt a dry mantle solidus. Taking into account the condensation conditions in the preplanetary nebula in the accretion zone of Mars, it can be concluded that large amounts of water or hydrated silicates have condensed in those regions. Therefore, water influences significantly the melting behaviour and the viscosity of the silicatic material. A model for the calculation of the thermal history of a planet is constructed. On this basis, and use of water — saturated solidus — it is possible to derive that the core is not liquid, as given in models employing a dry mantle solidus, but solid to a large extent, which prevents the operation of a large-scale dynamo and explains in that way the lack of a magnetic field. With these assumptions one can construct a possible evolutionary scheme that covers early crust differentiation, a hot thermal past and the missing magnetic field at present.  相似文献   
67.
The relationship between spatial variations of the properties of sea-floor sediments and acoustic backscatter from the surface of the sea floor on the continental shelf off of Panama City, Florida, USA, is investigated using surficial sediment grab samples and digital side-scan sonar data. Acoustic backscatter strength has a high, direct correlation with the mean grain size of the sediments. Acoustic backscatter strength also correlates directly with the carbonate content of the sediments, particularly in medium-and coarse-sand facies, because large, irregularly shaped, carbonate particles affect both the mean grain size of the sediments and the roughness of the surface of the sea floor.  相似文献   
68.
Two seismic refraction and gravity lines were obtained along and normal to the axis of the Aegir Rift, an extinct spreading centre in the Norway Basin. Velocity-depth solutions and crustal structure models are derived from ocean-bottom records using two-dimensional ray tracing and synthetic seismogram modelling techniques. Gravity data are used to generate models consistent with the lateral variations in thickness of the layers in the crustal models. The resulting models require considerable degree of lateral inhomogeneity along and perpendicular to the rift axis. Crust within the extinct spreading centre is found to be thinner and of low P-wave velocity when compared with the crust sampled off-axis. To explain reduced velocities of the lower crust we suggest that, due to the relationship between fracturing and seismic velocity, the decreasing spreading rate leading up to extinction let the mechanically strong layer thicken, so that faulting and fracturing extended to greater depths . Low velocities are also observed in the uppermost mantle underlying the extinct spreading ridge. This zone is attributed to hydrothermal alteration of upper mantle peridotites. Furthermore, after spreading ceased 32-26 my ago, ongoing passive hydrothermal circulation was accompanied by the precipitation of alteration products in open void spaces, thereby decreasing the porosity and increasing the velocity. Consequently the typical low velocities of layer 2 found at active mid-ocean ridges have been replaced by values typical of mature oceanic crust.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号