首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  国内免费   4篇
测绘学   1篇
大气科学   3篇
地球物理   4篇
地质学   19篇
海洋学   3篇
天文学   1篇
综合类   3篇
自然地理   1篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2014年   2篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   5篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1985年   1篇
  1953年   1篇
  1949年   1篇
  1948年   3篇
  1941年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
11.
12.
This diagenetic study (including fieldwork, petrographic, fluid inclusion, and stable isotope investigations) deals with the outcrop of Upper Permian–Lower Triassic carbonate rocks, which are equivalent to the Khuff Formation. The studied succession, which outcrops in the Ras Al Khaimah region, northern United Arab Emirates, comprises three formations, including the Bih, the Hagil, and the Ghail formations. The study focuses on unraveling the conditions and fluid compositions encountered during diagenesis of the succession. Emphasize is also made on linking diagenesis to major stratigraphic surfaces and to highlight reservoir property evolution and heterogeneity of the studied rocks. The evolution of fluids and related diagenetic products can be summarized as follows: (1) formation of near-surface to shallow burial, fine-crystalline dolomite (dolomite matrix) through pervasive dolomitization of carbonate sediments by modified marine pore waters; (2) formation of coarse-crystalline dolomite cement by highly evolved marine pore waters (13–23 wt.% NaCl eq.) at elevated temperatures (120–208°C), and (3) calcite cementation by highly saline fluid (20–23 wt.% NaCl eq.) at high temperature (170–212°C). A final calcite cement generation has been formed by the percolation of meteoric fluids during uplift. Fracture- and vug-filling diagenetic minerals are mainly restricted to the mid-Bih breccia marker level, suggesting preferential focused fluid flow through specific stratigraphic surfaces as well as along tectonic-related structures. Reservoir properties have been evolved as result of the interplay of the original sedimentary texture and the diagenetic evolution. Porosity is higher in the Bih Formation, which is dominated by dolomitized packstones and grainstones, than in the Hagil and Ghail formations, consisting mainly of dolomitized mudstones and wackestones. Image analyses were used to quantify the visual porosity in thin sections. The highest porosity values were measured in the Bih Formation, which is characterized by significant amounts of vug- and fracture-filling cements. This feature is attributed to the increase of porosity owing to substantial dissolution of abundant intergranular and vug-filling cements. In contrast, the Hagil and Ghail formations, which consist of finer-grained rock than the Bih Formation, were less cemented, and thus, the porosity enhancement by cement dissolution was insignificant.  相似文献   
13.
An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium‐isotope analyses, as well as fluid‐inclusion micro‐thermometry, led to a better understanding of the evolution of fluid–rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture‐filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub‐vertical north–south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub‐vertical east–west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid‐inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200°C) saline brines (20 to 23% NaCl eq.). Through one‐dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200°C. Tectonically‐driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene–Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north–south; F3) and pre‐existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.  相似文献   
14.
15.
The Tournasian age Pekisko carbonates in the Normandville Field (northwestern Alberta) form waulsortian-like, bryozoan/crinoid mounds that developed in fairly deep, low energy, cool water systems, close to the ramp margin. Three main depositional environments occur: (1) crinoidal apron with wackestone, grainstone and floatstone facies; (2) mound flank with grainstone, wackestone, packstone and floatstone facies dipping 35°; and (3) bryozoan mound core, composed of rudstone and floatstone facies with fenestrate bryozoa, minor crinoids and carbonate mud. Local highs due to fault-bounded blocks, created from the collapse of the Devonian Peace River High, may have controlled the location of mound nucleation.Diagenesis of the bryozoan/crinoid mounds included calcite cementation, compaction, dolomitization, silicification, and hydrocarbon emplacement events. The mound core facies contains submarine fascicular optic calcite and bladed/prismatic calcite cements, and later ferroan, brightly luminescent, pore-filling blocky spar cement. The crinoid apron facies contains syntaxial cement associated with crinoids, and the ferroan blocky spar cement. The mounds are dominantly limestone; however, in one well, dolomite dominates the lower section. Four types of dolomite have been identified: partial replacive; chemical-compaction-related, pervasive dolomite and saddle dolomite cement. All dolomites are non-stoichiometric (CaCO3 mole% 56.6–62.6). The partial, zoned replacive dolomite replaces micrite and syntaxial rim calcite in mound flank and crinoid apron facies. The chemical compaction-related dolomite is found along dissolution seams and stylolites and has similar CL characteristics to the replacive dolomite. The pervasive dolomite is fabric destructive and has dull cores and bright rims in CL. Saddle dolomite (0.15 mm) has brightly-luminescent, concentric zoning and occurs in vugs and fossil pore spaces.Chemical and isotopic analysis of the bryozoan/crinoid mounds indicate that the original marine signatures in micrite, early cements, some crinoids and brachiopods have been preserved. However, carbon isotopic values for some crinoids, matrix and dolomite show more positive values compared to known Mississippian carbonate values. Recrystallization during shallow burial has reset the oxygen isotopic composition of some crinoids and micrite. Oxygen and carbon isotopic compositions of most dolomites overlap with altered crinoids and early calcite cements. However, saddle dolomites have lighter δ18O values, similar to saddle dolomites from the Devonian Wabamun Group in this area. The isotopic variations in later ferroan calcite cements show an inverted-J trend, possibly due to variable amounts of water-rock interaction. While the Sr-isotopic ratio of submarine calcite cement coincides with that of Mississippian seawater, the later ferroan calcite cement is more radiogenic, indicating a different source of fluids.  相似文献   
16.
In this paper, the Einstein field equations have been solved for a cloud of string with heat flux in Bianchi type III space-time. The physical and geometrical properties of the model have been examined.  相似文献   
17.
The precise seismic substructural interpretation of the Turkwal oil field in the Central Potwar region of district Chakwal of Pakistan has been carried out. The research work was confined to the large fore-thrust that serves as an anticlinal structural trap through ten 2D seismic lines. A precise seismic substructural model of the Eocene Chorgali Limestone with precise orientation of thrust and oblique slip faults shows the presence of a huge fracture, which made this deposit a good reservoir. The abrupt surface changes in dip azimuth for the Eocene Chorgali Limestone verifies the structural trends and also the presence of structural traps in the Turkwal field. The logs of three wells (Turkwal deep X-2, Turkwal-01 and Fimkassar-01) were analyzed for petrophysical studies, well synthetic results and generation of an Amplitude Versus Offset (AVO) model for the area. The AVO model of Turkwal deep X-2 shows abrupt changes in amplitude, which depicts the presence of hydrocarbon content. Well correlation technique was used to define the overall stratigraphic setting and the thickness of the reservoir formation in two wells, Turkwal-01 and Turkwal deep X-2. The Eocene Chorgali Limestone in Turkwal-01 is an upward thrusted anticlinal structure and because of the close position of both wells to the faulted anticlinal structure, its lesser thickness differs compared to Turkwal deep X-2. The overall results confirm that the Turkwal field is comparable to several similar thrust-bound oil-bearing structures in the Potwar basin.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号