首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26203篇
  免费   4841篇
  国内免费   6297篇
测绘学   1171篇
大气科学   5837篇
地球物理   7085篇
地质学   12907篇
海洋学   2824篇
天文学   1350篇
综合类   3054篇
自然地理   3113篇
  2024年   78篇
  2023年   379篇
  2022年   1087篇
  2021年   1235篇
  2020年   1026篇
  2019年   1160篇
  2018年   1461篇
  2017年   1315篇
  2016年   1569篇
  2015年   1242篇
  2014年   1564篇
  2013年   1481篇
  2012年   1352篇
  2011年   1392篇
  2010年   1485篇
  2009年   1468篇
  2008年   1329篇
  2007年   1277篇
  2006年   1026篇
  2005年   894篇
  2004年   769篇
  2003年   793篇
  2002年   720篇
  2001年   692篇
  2000年   918篇
  1999年   1390篇
  1998年   1116篇
  1997年   1108篇
  1996年   999篇
  1995年   874篇
  1994年   820篇
  1993年   695篇
  1992年   542篇
  1991年   430篇
  1990年   322篇
  1989年   294篇
  1988年   268篇
  1987年   171篇
  1986年   145篇
  1985年   106篇
  1984年   67篇
  1983年   55篇
  1982年   68篇
  1981年   54篇
  1980年   27篇
  1979年   27篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1958年   27篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
941.
942.
943.
Geotechnical and Geological Engineering - Soft and hard rock assemblages and anchor solids have important effects on rock mechanics properties under different inclinations and assemblages, so it is...  相似文献   
944.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
945.
Stable isotopes in precipitation are useful tracers to strengthen understanding of climate change and hydrological processes. In this study, the moisture sources of 190 precipitation events in Beijing were analysed using the Hybrid Single‐particle Lagrangian Integrated Trajectory model, based on which we studied the relation between variations in precipitation δ18O and dynamics in moisture sources and atmospheric circulation in seasonal and interannual timescales. Categorization of 7 groups of moisture sources was performed, among which oceanic moisture sources presented lower δ18O in precipitation than continental moisture sources. The results show that seasonal variations of precipitation δ18O were caused by changes of moisture sources. In summer, moisture from proximal oceans dominated vapour transport to Beijing due to increasing monsoon strength and resulted in a relatively small variation of precipitation δ18O. At the interannual timescale, the variations of δ18O in summer precipitation were related to dynamics in oceanic moistures, showing depleted values when the contribution of oceanic moistures, especially the proportion of long‐distance oceanic moisture, was high. Further analysis indicated that changes of oceanic moisture sources were controlled by the strength of summer monsoons. These findings address the complexity of moisture sources in midlatitude monsoon areas and suggest that isotopic signals in precipitation have the potential to deduce changes in moisture sources and atmospheric circulation and can therefore serve for palaeoclimate reconstruction.  相似文献   
946.
Shuaipu Zhang  Mingan Shao 《水文研究》2017,31(15):2725-2736
Temporal stability of soil moisture has been widely used in hydrological monitoring since it emerged. However, the spatial analysis of temporal stability at the landscape scale is often limited because of insufficient sampling numbers. This work made an effort to investigate the spatial variations of temporal stability of soil moisture in an oasis landscape. The specific objectives of the study were to explore the spatial patterns of temporal stability and to determine the controlling factors of temporal stability in the desert oasis. A time series of soil moisture measurements were gathered on 23 occasions at 118 locations over 3 years in a rectangular transect of approximately 100 km2. The nonparametric Spearman's rank correlation coefficient, standard deviation of relative difference (SDRD), and mean absolute bias error (MABE) were used to quantify the temporal stability of soil moisture. Results showed that the temporal stability of soil moisture was depth dependent and season dependent. The spatial pattern of soil moisture in a deep soil layer and between two same seasons generally had a high temporal stability. SDRD and MABE were spatially autocorrelated and exhibited strong spatial structures in the geographic space. The concept of temporal stability can be extended to describe the time‐stable areas of soil moisture with geostatistics. There were great differences between SDRD and MABE in describing the temporal stability of soil moisture and in identifying the controlling factors of temporal stability. In this case, MABE was a better alternative to estimate the areal mean soil moisture using representative locations than SDRD. Land use type, soil moisture condition, and soil particle composition were the dominant controls of temporal stability in the oasis. These insights could help to better understand the essence of temporal stability of soil moisture in arid regions.  相似文献   
947.
948.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   
949.
Although it has been increasingly acknowledged that groundwater flow pattern is complicated in the three‐dimensional (3‐D) domain, two‐dimensional (2‐D) water table‐induced flow models are still widely used to delineate basin‐scale groundwater circulation. However, the validity of 2‐D cross‐sectional flow field induced by water table has been seldom examined. Here, we derive the analytical solution of 3‐D water table‐induced hydraulic head in a Tóthian basin and then examine the validity of 2‐D cross‐sectional models by comparing the flow fields of selected cross sections calculated by the 2‐D cross‐sectional model with those by the 3‐D model, which represents the “true” cases. For cross sections in the recharge or discharge area of the 3‐D basin, even if head difference is not significant, the 2‐D cross‐sectional models result in flow patterns absolutely different from the true ones. For the cross section following the principal direction of groundwater flow, although 2‐D cross‐sectional models would overestimate the penetrating depth of local flow systems and underestimate the recharge/discharge flux, the flow pattern from the cross‐sectional model is similar to the true one and could be close enough to the true one by adjusting the decay exponent and anisotropy ratio of permeability. Consequently, to determine whether a 2‐D cross‐sectional model is applicable, a comparison of hydraulic head difference between 2‐D and 3‐D solutions is not enough. Instead, the similarity of flow pattern should be considered to determine whether a cross‐sectional model is applicable. This study improves understanding of groundwater flow induced by more natural water table undulations in the 3‐D domain and the limitations of 2‐D models accounting for cross‐sectional water table undulation only.  相似文献   
950.
The mechanism of the disruption, both lithospheric thinning and oceanization of the commonly accepted long‐term‐stable Archaean craton, is still an open question. The available models, all imply a bottom to top process. With the construction of a 1660‐km‐long transect across the eastern North China Craton (NCC), we demonstrate that both the P‐wave velocity and density in the lowermost crust beneath the central section are significantly higher than in the corresponding parts of the south and north sections on the transect. These features are interpreted as geophysical signature of lower crustal underplating, which supplies sufficiently high gravitational potential energy to trigger lateral flow of the lower crust. This magma underplating‐triggered bilateral lower crust flow may facilitate the lithospheric thinning by means of asthenosphere upwelling and decompression melting, which infill the gap produced by the lower crust flow. The underplating‐triggered lower crustal flow can provide an alternative mechanism to explain the NCC lithosphere disruption, which highlights the crustal feedback to Archaean lithosphere disruption, from top to bottom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号