A numerical study for estimating the tidal open boundary conditions of a shelf current modrl from tb coastal tidal observations
is presented. The method is based on the optimal control/adjoint method. A lrast square fitting of the model state to simulated
data is used. Two ideal domains and coastlines are considered. Using the IAP shallow. water model and its adjoint model, some
identical twin experiments are carried out to test efficiency and lirnilsd of the method. The results show that the adjoint
method can efficiently estimate the open boundary conditions well for gulf/bay like domains. The adjoint method seems to have
great potential to improve the accuracy of tide and shelf current modeling in coastal regions.
Project supported hy the National Natural Science Fuundation of China (Grant No. 49376256) 相似文献
The spatial distribution of heterotrophic ciliates, environmental factors and potential food items (bacteria, Synechococcus spp. and nanoflagellates) were measured in the East China Sea to examine which variables contributed importantly to the long-term
distribution of ciliates between 1998 and 2007. In July 1998 and June 2003, heterotrophic ciliates were found to be abundant
(1,000–2,000 × 103 cells m−3) in regions where surface salinity <32 but extremely low (<500 × 103 cells m−3) in shelf waters of surface salinity >32. After August 2003, shortly after the completion of the Three Gorges Dam, we found
no significant areal differences in the abundance of heterotrophic ciliates (HC). However, we found a significantly negative
correlation between temperature and HC abundance of surface water after the completion of the dam, suggesting that temperature
had a greater influence on HC abundance, once the original saline state had changed. For the long-term trends on the vertical
distribution of HC, their abundance was significantly higher in the upper 50 m of the water column than at either 75 or 100 m.
Abundance of Synechococcus spp. at these levels varied significantly in regions of surface salinity <32, suggesting that ciliates and picophytoplankton
contribute greatly to mediating the transfer of organic matter to higher trophic levels in this marine ecosystem. 相似文献
Marine colloidal material (1 kDa–0.2 μm) was isolated by cross-flow ultrafiltration followed by diafiltration and freeze-drying from surface waters of the Gulf of Mexico and the Middle Atlantic Bight (MAB), as well as from estuarine waters of Galveston Bay. Elemental characterization of isolated colloidal material included organic carbon (OC) and selected trace metal (Cu, Pb, Zn, Cd, Co, Ni, Cr, Be, Fe, Al, Mn, V, Ba, and Ti) determinations. It was found that levels of these metals in marine colloids ranged from <0.1 to 50 μg/g colloidal matter, except for Fe which generally had a concentration >120 μg/g. Most metals (Cu, Pb, Zn, Ni, Al, Mn, V, and Ti) had an average concentration >1 μg/g while concentrations of Cd, Co and Be were usually <1 μg/g. Metal concentrations (μg/g) in isolated colloids were, in general, higher in Galveston Bay than in the Gulf of Mexico, suggesting either high abundance of trace metals in estuarine waters or differences in organic matter composition. Higher colloidal metal concentrations in the MAB than in the Gulf of Mexico might be due to higher terrestrial inputs in the MAB. Colloidal metal concentrations (μg/g) were generally lower than those in average soils, continental crust and suspended particles. However, metal/aluminum ratios (Me/Al) in isolated marine colloids were significantly higher than those for average soils and continental crust. Most importantly, colloids had a metal composition and metal/OC ratio (Me/C) similar to humic substances and marine plankton, suggesting that marine colloids largely originate from planktonic sources and are composed of predominately organic components. The Me/C ratios of Galveston Bay colloids followed the sequence of Cu>Ni, Cr, Zn>Mn>Co>Pb, Cd, which is similar to the Irving–Williams order except for Mn, suggesting that the interaction of metals with marine colloids is determined by the affinity of metals for specific organic ligands. 相似文献
Based on the latest oceanic surface drifter dataset from the global drifter program during 2000–2019, this study investigated the global variation of relative frequency shift(RFS), near-inertial energy(NIE) and inverse excess bandwidth(IEB) of near-inertial motions, and analyzed their relations with oceanic mesoscale dynamics, relative vorticity and strain. Compared with previous works, we have some new findings in this study:(1) the RFS was high with negative values in some regions in which we found a significant blue shift of the RFS in the equatorward of 30°N(S) and from 50°N to 60°N in the Pacific, and a red shift in the western boundary currents and their extension regions, the North Atlantic and the Antarctic Circumpolar Current regions;(2) more peak values of the NIE were found in global regions like the South Indian Ocean, the Luzon Strait and some areas of the South Ocean;(3) the global distribution of the IEB were characterized by clear zonal bands and affected by vorticity and wind field;(4)the RFS was elevated as the absolute value of the gradient of vorticity increased, the IEB did not depend on the gradient of vorticity, and the eddy kinetic energy(EKE) weakened with the decrease of the absolute value of RFS;(5) the NIE decreased with increasing absolute value of the relative vorticity and the gradient of vorticity, but it increased with increasing strain and EKE when EKE was larger than 0.003 2 m~2/s~2. 相似文献
During the self-weight penetration process of the suction foundation on the dense sand seabed, due to the shallow penetration depth, the excess seepage seawater from the outside to the inside of the foundation may cause the negative pressure penetration process failure. Increasing the self-weight penetration depth has become an important problem for the safe construction of the suction foundation. The new suction anchor foundation has been proposed, and the self-weight penetration characteristics of the traditional suction foundation and the new suction anchor foundation are studied and compared through laboratory experiments and analysis. For the above two foundation types, by considering five foundation diameters and two bottom shapes, 20 models are tested with the same penetration energy. The effects of different foundation diameters on the penetration depth, the soil plug characteristics, and the surrounding sand layer are studied. The results show that the penetration depth of the new suction foundation is smaller than that of the traditional suction foundation. With the same penetration energy, the penetration depth of the suction foundation becomes shallower as the diameter increases. The smaller the diameter of the suction foundation, the more likely it is to be fully plugged, and the smaller the height of the soil plug will be. In the stage of self-weight penetration, the impact cavity appears around the foundation, which may affect the stability of the suction foundation.
In this paper, the intra-seasonal variability of the abyssal currents in the China Ocean Mineral Resources Association (COMRA) polymetallic nodule contact area, located in the western part of the Clarion and Clipperton Fraction Zone in the tropical East Pacific, is investigated using direct observations from subsurface mooring instruments as well as sea-surface height data and reanalysis products. Mooring observations were conducted from September 13, 2017 to August 15, 2018 in the COMRA contact area (10°N, 154°W). The results were as follows: (1) At depths below 200 m, the kinetic energy of intra-seasonal variability (20?100 d) accounts for more than 40% of the overall low-frequency variability, while the ratio reaches more than 50% below 2 000 m. (2) At depths below 200 m, currents show a synchronous oscillation with a characteristic time scale of 30 d, lasting from October to the following January; the energy of the 30-d oscillation increases with depth until the layer of approximately 4 616 m, and the maximum velocity is approximately 10 cm/s. (3) The 30-d oscillation of deep currents is correlated with the tropical instability waves in the upper ocean. 相似文献