首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2191篇
  免费   127篇
  国内免费   12篇
测绘学   64篇
大气科学   132篇
地球物理   631篇
地质学   861篇
海洋学   255篇
天文学   239篇
综合类   13篇
自然地理   135篇
  2023年   9篇
  2022年   21篇
  2021年   43篇
  2020年   41篇
  2019年   45篇
  2018年   86篇
  2017年   95篇
  2016年   118篇
  2015年   102篇
  2014年   107篇
  2013年   139篇
  2012年   113篇
  2011年   159篇
  2010年   125篇
  2009年   152篇
  2008年   141篇
  2007年   117篇
  2006年   89篇
  2005年   73篇
  2004年   91篇
  2003年   62篇
  2002年   40篇
  2001年   38篇
  2000年   33篇
  1999年   15篇
  1998年   30篇
  1997年   19篇
  1996年   14篇
  1995年   18篇
  1994年   16篇
  1993年   13篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   12篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   5篇
  1983年   10篇
  1982年   9篇
  1981年   7篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1975年   5篇
  1973年   4篇
  1965年   4篇
  1963年   4篇
排序方式: 共有2330条查询结果,搜索用时 171 毫秒
81.
82.
This article presents a novel finite element formulation for the Biot equation using low-order elements. Additionally, an extra degree of freedom is introduced to treat the volumetric locking steaming from the effective response of the medium; its balance equation is also stabilized. The accuracy of the proposed formulation is demonstrated by means of numerical analyses.  相似文献   
83.
This paper discusses a series of stress point algorithms for a breakage model for unsaturated granular soils. Such model is characterized by highly nonlinear coupling terms introduced by breakage‐dependent hydro‐mechanical energy potentials. To integrate accurately and efficiently its constitutive equations, specific algorithms have been formulated using a backward Euler scheme. In particular, because implementation and verification of unsaturated soil models often require the use of mixed controls, the incorporation of various hydro‐mechanical conditions has been tackled. First, it is shown that the degree of saturation can be replaced with suction in the constitutive equations through a partial Legendre transformation of the energy potentials, thus changing the thermomechanical state variables and enabling a straightforward implementation of a different control mode. Then, to accommodate more complex control scenarios without redefining the energy potentials, a hybrid strategy has been used, combining the return mapping scheme with linearized constraints. It is shown that this linearization strategy guarantees similar levels of accuracy compared with a conventional strain–suction‐controlled implicit integration. In addition, it is shown that the use of linearized constraints offers the possibility to use the same framework to integrate a variety of control conditions (e.g., net stress and/or water‐content control). The convergence profiles indicate that both schemes preserve the advantages of implicit integration, that is, asymptotic quadratic convergence and unconditional stability. Finally, the performance of the two implicit schemes has been compared with that of an explicit algorithm with automatic sub‐stepping and error control, showing that for the selected breakage model, implicit integration leads to a significant reduction of the computational cost. Such features support the use of the proposed hybrid scheme also in other modeling contexts, especially when strongly nonlinear models have to be implemented and/or validated by using non‐standard hydro‐mechanical control conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
84.
85.
86.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
87.
Acid drainage is an important water quality issue in Andean watersheds, affecting the sustainability of urban, agricultural, and industrial activities. Mixing zones receiving acid drainage are critical sites where changes in pH and chemical environment promote the formation and dissolution of iron and aluminum oxy/hydroxides. These particles can significantly change the speciation of toxic metals and metalloids throughout drainage networks via sorption, desorption, and settling processes. However, little is known about the behavior of particle size distributions (PSDs) in streams affected by acid drainage and their relationship to metal speciation. This work studied: (a) the PSDs for a wide range of mixing ratios found at a fluvial confluence affected by acid drainage, and (b) the response of PSDs and arsenic speciation to environmental changes found when the particles approach complete mixing conditions. The confluence between the Azufre River (pH ~ 2, high concentration of dissolved metals) and Caracarani River (pH = 8.6, low concentration of dissolved metals) was used as a representative model for study. Field measurements show a bimodal PSD with modal diameters of ~50 and 300 μm. At shorter distances from the junction, the smaller modes with smaller particle volumes were dominant across the stream cross‐sections. A systematic shift towards larger particle sizes and larger particle volumes occurred downstream. The analysis of laboratory PSDs for Azufre/Caracarani mixing ratios between 0.01 and 0.5 (pH from 6.2 to 2.3) showed a bimodal trend with ~15 and 50 μm characteristic diameters; larger particles formed at pH>4. When particle suspensions were transferred in laboratory experiments from very low pH to full mixing conditions (pH ~ 2.8 and mixing ratio ~ 0.25) particle sizes varied, and the dissolved arsenic concentration decreased. The observed reaction kinetics were slow compared to the time scale of advective transport, creating opportunities for engineered controls for arsenic. This work contributes to a better understanding of the chemical‐hydrodynamic interactions in watersheds affected by mining, and identifying opportunities to improve water quality at points of use.  相似文献   
88.
The last decade has seen major technical and scientific improvements in the study of water transfer time through catchments. Nevertheless, it has been argued that most of these developments used conservative tracers that may disregard the oldest component of water transfer, which often has transit times greater than 5 years. Indeed, although the analytical reproducibility of tracers limits the detection of the older flow components associated with the most dampened seasonal fluctuations, this is very rarely taken into account in modelling applications. Tritium is the only environmental tracer at hand to investigate transfer times in the 5‐ to 50‐year range in surface waters, as dissolved gases are not suitable due to the degassing process. Water dating with tritium has often been difficult because of the complex history of its atmospheric concentration, but its current stabilization together with recent analytical improvements open promising perspectives. In this context, the innovative contribution of this study lies in the development of a generalized likelihood uncertainty estimation‐based approach for analysing the uncertainties associated with the modelling of transit time due to both parameter identification and tracer analytical precision issues. A coupled resampling procedure allows assessment of the statistical significance of the transfer time differences found in diverse waters. This approach was developed for tritium and the exponential‐piston model but can be implemented for virtually any tracer and model. Stream baseflow, spring and shallow aquifer waters from the Vallcebre research catchments, analysed for tritium in different years with different analytical precisions, were investigated by using this approach and taking into account other sources of uncertainty. The results showed three groups of waters of different mean transit times, with all the stream baseflow and spring waters older than the 5‐year threshold needing tritium. Low sensitivity of the results to the model structure was also demonstrated. Dual solutions were found for the waters sampled in 2013, but these results may be disambiguated when additional analyses will be made in a few years. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号