首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   3篇
测绘学   2篇
大气科学   2篇
地球物理   16篇
地质学   50篇
海洋学   4篇
天文学   39篇
自然地理   3篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   7篇
  2016年   13篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   11篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1988年   3篇
  1987年   6篇
  1986年   1篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
31.
The discrete element method (DEM) is used to study the response of anisotropic rocks under true triaxial testing. Numerical samples of seven different bedding orientations (β = 0o, 15o, 30o, 45o, 60o, 75o, and 90o) are created. Six series of test simulations (σ3 = 0, 10, 30, 50, 70, and 100 MPa) are conducted on each sample, with five different σ2 values, varied from σ3 to σ1. The effects of anisotropy and intermediate stress on the peak strength, brittle-ductile transition, and degree of anisotropy are subsequently explained through underlying micromechanics. Results show a “fan-shaped” variation of the peak strength with σ2, displaying an ascending-then-descending trend. An increasing brittleness with σ2 is observed at lower confining pressures for all, but medium anisotropy angles. For higher confining pressures, increasing ductility with σ2 is seen for every anisotropy angle. A U-shaped variation of peak strength with anisotropy angles is noted that flattens under high intermediate stress. Hence, for numerical models of Posidonia shale under normalized σ2 higher than 0.76, the anisotropy effect is found to be negligible. Micromechanical analyses reveal that the stress asymmetry, suppression of weak plane action as well as the localization and coalescence of microcracks in the intact rock matrix, due to σ2, are the contributors towards the obtained trends. Since existing failure criteria do not weigh in these features in geotechnical assessments, this paper helps future studies by providing a deeper understanding of these effects and a comprehensive data set for the analyses of anisotropic rocks under polyaxial stress conditions.  相似文献   
32.
33.
A total of 72 water samples were collected from the sub-surface aquifer system in the Midyan basin and analyzed for 24 major, minor and trace elements. Histograms and normal quantile plots were used to delineate the sub-populations of the chemical constituents in the studied groundwater samples. Some of the elements such as Al, K, Ca, Mg, Na and Cl have concentrations that could be linked to the weathering of the surface rock strata. On the other hand, the elements like As, Pb and Sb have concentration, that can be linked to agricultural practices in the area. The use of simple statistical analysis, frequency histograms, and Q-Q plots were useful for the detection and evaluation of elemental constituents in the groundwater of the study area.  相似文献   
34.
35.
36.
Ophiolite complexes, formed in a suprasubduction zone environment during Neoproterozoic time, are widely distributed in the Eastern Desert of Egypt. Their mantle sections provide important information on the origin and tectonic history of ocean basins these complexes represent. The geochemistry and mineralogy of the mantle section of the Wizer ophiolite complex, represented by serpentinites after harzburgite containing minor dunite bodies, are presented. Presence of antigorite together with the incipient alteration of chromite and absence of chlorite suggests that serpentinization occurred in the mantle wedge above a Neoproterozoic subduction zone. Wizer peridotites have a wide range of spinel compositions. Spinel Cr# [100Cr/(Cr + Al)] decrease gradually from dunite bodies (Cr# = 81–87) and their host highly depleted harzburgites (Cr# = 67–79) to the less depleted harzburgites (Cr# = 57–63). Such decreases in mantle refractory character are accompanied by higher Al and Ti contents in bulk compositions. Estimated parental melt compositions point to an equilibration with melts of boninitic composition for the dunite bodies (TiO2 = ~<0.07–0.22 wt%; Al2O3 = 9.4–10.6 wt%), boninitic-arc tholeiite for the highly depleted harzburgites (TiO2 = <0.09–0.28 wt%; Al2O3 = 11.2–14.1 wt%) and more MORB-like affinities for the less depleted harzburgites (TiO2 = ~<0.38–0.51 wt%; Al2O3 = 14.5–15.3 wt%). Estimated equilibrium melts are found in the overlying volcanic sequence, which shows a transitional MORB–island arc geochemical signature with a few boninitic samples. Enrichment of some chromites in TiO2 and identification of sulfides in highly depleted peridotites imply interaction with an impregnating melt. A two-stage partial melting/melt–rock reaction model is advocated, whereby, melting of a depleted mantle source by reaction with MORB-like melts is followed by a second stage melting by interaction with melts of IAT–boninitic affinities in a suprasubduction zone environment to generate the highly depleted harzburgites and dunite bodies. The shift from MORB to island arc/boninitic affinities within the mantle lithosphere of the Wizer ophiolite sequence suggests generation in a protoarc-forearc environment. This, together with the systematic latitudinal change in composition of ophiolitic lavas in the Central Eastern Desert (CED) of Egypt from IAT–boninitic affinities to more MORB-like signature, implies that the CED could represent a disrupted forearc-arc-backarc system above a southeast-dipping subduction zone.  相似文献   
37.
In this study, a comprehensive assessment on the generation mechanism, distribution characteristics, and extension rules of structure cracks was conducted by in situ monitoring and field investigation in the Chengchao Iron Mine. Structure cracks are affected by many factors, e.g., surface deformation, structure strength, occurrence position, and machine vibration. They initially occur in a structure when the strength of the structure is not enough to resist the inner strain as surface deformation increases. In contrast, increases in width and length of structure crack exert stress release in the structure and thus decrease structure deformation surrounding the crack. A great ground crack may adversely aggravate structure cracking and release the stress of surrounding rock masses. In addition, micro cracks in rock masses provide favorable conditions for the generation and extension of cracks, resulting that cracks occur in shaft walls more easily and extend towards the deeper. The initial distribution of cracks is generally consistent with such micro cracks. Subsequently, cracks in deep rock masses will extend along the strike of the mined-out area as surface deformation increases. Sensibilities to cracking of structures are changed by their different strain resistances and become stronger from bolt-shotcrete shaft, bolt-shotcrete tunnel, and brick-concrete building to brick wall. Based on distribution characteristics of cracks and wave velocity in rock masses, the overlaying strata affected by underground mining can be divided into four zones: broken zone, broken transition zone, crack generation zone, and micro deformation zone.  相似文献   
38.
In the present work,we study the time evolution,significance of the N-S asymmetry excesses presented as a function of the solar cycle and prominent rotational p...  相似文献   
39.
Low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the break-up of southwestern Gondwana. Thermochronological data obtained from apatite fission-track analysis of Neoproterozoic metamorphic and Paleozoic to Mesozoic siliciclastic rocks as well as Mesozoic dikes and alkaline intrusions from the Ponta Grossa Arch provided ages between 66.2 (1.3) and 5.9 (0.8) Ma. These data clearly indicate a post-rift reactivation during Late Cretaceous and Paleogene times. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin could be described in three main phases related to the rift to post-rift evolution of SE Brazil. Furthermore, the spatial distribution of age data indicates the presence of two age groups: a NE age-group (NE of Curitiba), with ages around 20?Ma and a SW age-group (Curitiba and NW) with ages of around 50?Ma. The change of ages follows the NW?CSE trending S?o Jer?nimo-Curi??va fault zone that can be traced offshore into the southern end of the Santos basin. Within the Santos basin, this lineament ends up to the salt occurrence in the south and seams to play a major role in the structural evolution of the Santos basin and the Rio Grande Rise. Sedimentological studies in the Santos basin evidenced that the transport direction changed in Miocene from WNW to WNW/NNW. During the Oligocene and earlier, the sediments were transported mainly from southeastwards to the direction of the ??Curitiba area?? into the Santos basin. Within the Miocene, an additional transport direction from an area north of Curitiba developed.  相似文献   
40.
Post-collisional alkaline magmatism (∼610–580 Ma) is widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield (ANS), i.e. the northern part of the Egyptian Eastern Desert and Sinai. Alkaline rocks of G. Tarbush constitute the western limb of the Katharina ring complex (∼593 ± 16 Ma) in southern Sinai. This suite commenced with the extrusion of peralkaline volcanics and quartz syenite subvolcanics intruded by syenogranite and alkali feldspar granite. The mineralogy and geochemistry of these rocks indicate an alkaline/peralkaline within-plate affinity. Quartz syenite is relatively enriched in TiO2, Fe2O3, MgO, CaO, Sr, Ba and depleted in SiO2, Nb, Y, and Rb. The G. Tarbush alkaline suite most likely evolved via fractionation of mainly feldspar and minor mafic phases (hornblende, aegirine) from a common quartz syenite parental magma, which formed via partial melting of middle crustal rocks of ANS juvenile crust. Mantle melts could have provided the heat required for the middle crustal melting. The upper mantle melting was likely promoted by erosional decompression subsequent to lithospheric delamination and crustal uplift during the late-collisional stage of the ANS. Such an explanation could explain the absence or scarce occurrence of mafic and intermediate lithologies in the abundant late- to post-collisional calc-alkaline and alkaline suites in the northern ANS. Moreover, erosion related to crustal uplift during the late-collision stage could account for the lack or infrequent occurrence of older lithologies, i.e. island arc metavolcanics and marginal basin ophiolites, from the northern part of the ANS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号