首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
测绘学   3篇
地球物理   19篇
地质学   12篇
天文学   4篇
综合类   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2002年   2篇
  2001年   3篇
  1990年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
11.
A considerable number of in situ permeability tests in flysch are processed to a depth of 120m with a good spatial distribution. The distribution of permeability values for the different litho-types of this formation, their comparison and their decrease with depth is discussed. The depth where a permeability of 3 to 5×10-7m/sec can be retained (the limit of a reasonable grouting under a high dam) may be twofold if the geological history of the formation could not contain a compressional tectonic process. This depth may reach 100m in some cases. The differences in the mean values of permeability among the various litho-types are minor, while the presence of siltstones, always present although with varied participation, dramatically controls the global permeability.  相似文献   
12.
In this letter new results about the electron temperaturesT e of the NGC 2024 and IC 434 are given. They were found by the method of the ratioB Hx/B [N u] (Baudel, 1970). Accepting for the exciting stars the spectral types given by Georgelin (1969) our results were found to be in good agreement with Hjellming's (1968) theoretical predictions.  相似文献   
13.
This paper presents a methodology and its software implementation for the performance evaluation of low-cost accelerometer and magnetometer sensors for use in geomatics applications. A known mathematical calibration model has been adopted. The method was completed with statistical methodologies for adjusting observations and has been extended to calculate accuracies for the attitude, heading, and tilt angles estimation that are of interest to geomatics applications. The evaluation method consists of two stages. First, the evaluation method reviews the total magnitude of acceleration or the strength of the magnetic field. Second, the evaluation is more detailed and concerns the determination of mathematical parameters that describe both accelerometer and magnetometer working model. A software tool that implements the evaluation model has been developed and is applied both in accelerometer and magnetometer measurement data-sets acquired from a low-cost sensor system.  相似文献   
14.
A central issue in population ecology is to determine the structure of negative feedback-density depend process which regulates population dynamics and seasonal fluctuations. In this work the incidence of population density dependences and seasonality was examined in fruit orchards of three closely related pest species (Adoxophyes orana, Anarsia lineatella and (Grapholita) Grapholitha molesta). Analysis included 13 moth population time series during 2003–2011. Additionally, considering that time lags and seasonality are fundamental characteristics of ecological organisation and pest management, the work aimed to introduce a step wise algorithm to detect significant population feedbacks, moth seasonality and population synchronisation of nearby locations. In the proposed procedure, each population-time series was first analysed on the basis of autocorrelation and partial autocorrelation. Moreover, assuming that each of the ecological variable, observed at successive time points, consist of a stochastic process, autoregressive moving average ARMA(p,q) models and seasonal autoregressive moving average models SARMA(p,q)x(P,Q) S were fitted on data. The Akaike information criteria was further used by the stepwise algorithm for parameter optimization and model improvement. Model construction is accompanied by a presentation of the fitting results and a discussion of the heuristic benchmarks used to assess the forecasting performance of the models. Life cycles of populations belonging to same species appeared to synchronise by terms of their autocorrelation functions. Delayed density dependence and order was in most cases of lag:1 and 2, while lag >3 was not found more frequently as expected by chance. In A. orana and A. lineatella moth species lag = 1 delayed density dependence was significantly more frequent and in particular in nearby locations. However, the structure of the fitted models varied with respect to species and observation region. In some cases, seasonal models were considered to be more accurate in simulating moth population dynamics. Finally, to provide means in forecasting moth emergence and abundance, utile in pest management, the models were trained using 2003–2009 data sets and their forecasting performance were validated for each case using data sets of 2010–2011. In most cases, the constructed stochastic linear autoregressive models simulated the population outbreaks very well. Describing and forecasting stochastic population fluctuations is a basic tenet of theoretical and applied ecology, while detecting the relative roles of exogenous and endogenous mechanisms can partly describe the phenomenological behavior of pest population time series data and improve pest management.  相似文献   
15.
The current paper presents an efficient methodology for numerically simulating in three dimensions adjacent buildings that may experience pounding during strong earthquakes. In particular, a new approach to the numerical problem of spatial impact modeling that does not require the ‘a priori’ determination of the contact points is presented, taking also into account the geometry at the vicinity of an impact. In the current study, the buildings are simulated as linear multi‐degree‐of‐freedom‐systems, but the methodology can be easily extended to consider nonlinear behavior as well. A software application has been specifically developed to implement the proposed methodology, using modern object‐oriented design and programming. The developed software is utilized in a simple example, and the computed results are compared with the corresponding analysis results obtained from a commercial general‐purpose software application that uses typical contact elements for the simulation of impacts. A discussion follows on the advantages and capabilities of the proposed methodology and the developed software. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
16.
This paper presents selected indicative results from an extensive parametric investigation that has been performed in order to assess the effects of potential earthquake‐induced poundings on the overall dynamic response of seismically isolated buildings. In particular, a seismically isolated building and its adjacent fixed‐supported buildings are subjected to various earthquake excitations that induce structural impact among the buildings in series. The results indicate that the seismically isolated building may hit against the adjacent buildings at the upper floor levels before the occurrence of any pounding at the isolation level with the surrounding moat wall. The severity of the impact depends on the dynamic properties of the adjacent buildings, in combination with the earthquake characteristics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
17.
AK Her is a very interesting contact binary exhibiting variable lightcurves and an obvious O'Connell effect, with max I greater than max II. Inthe present work an extensive study of this system is made covering notonly its light curve analysis, but also its orbital period changes in anattempt to give a definite answer regarding the apsidal motion of AK Her.Photoelectric observations of AK Her, obtained between 1985–1987 at theNational Observatory of Athens Greece, are presented, analysed anddiscussed. The light curve analysis was made with the W-D code and thegeometric and photometric elements of the system were derived. TheO'Connell effect was faced with a two dark spot model. Moreover, theorbital period of the system was examined and two periodicities weredetected. Since the first one corresponds to the time interval for whichobservational data exist and the second was found to be half of the first,it turns out that none of them is true. Two other significant results thatcame from the present analysis are that the orbital period of AK Her doesnot follow a sinusoidal variation and that, from the times of minimumlight at primary and secondary eclipses, it seems that there is no apsidalmotion.  相似文献   
18.
Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems.In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets that employ the same experimental geometry, wavelength and geometrical characteristics of the model anomalies. Moreover, real data from a crosswell tomographic project for the subsurface mapping of an ancient wall foundation are used for testing the efficiency of the proposed algorithm. The results show that the combined use of both methods can exploit the benefits of each approach, leading to improved final models and producing realistic velocity models, without significantly increasing the required computation time.  相似文献   
19.
During strong earthquakes, structural poundings may occur between adjacent buildings because of the limited separation distance and the deformations of their stories. A potential mitigation measure for this problem is the incorporation of layers of soft material, such as rubber, which can act as collision bumpers, in order to prevent the sudden impact pulses. In an effort to investigate the effectiveness of such an impact mitigation measure, relevant numerical simulations and parametric studies can be performed. However, none of the known impact models, which are available in the literature, is able to represent the usage of rubber bumpers with sufficient accuracy. The current study presents a simple but efficient methodology that can be used to simulate the incorporation of rubber layers between neighboring structures with relatively narrow seismic gaps. Such methodology will enable us to numerically investigate the effectiveness of using rubber bumpers to mitigate potential earthquake‐induced pounding. In particular, a new nonlinear inelastic force‐based impact model, able to appropriately describe the behavior of rubber under impact loading, taking also into account the limited thickness of the bumper, is introduced. Finally, a numerical example of simulating earthquake‐induced pounding between two multistory buildings with the consideration of rubber bumpers at impact locations is presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
20.
The response of multi‐storey structures can be controlled under earthquake actions by installing seismic isolators at various storey levels. By vertically distributing isolation devices at various elevations, the designer is provided with numerous options to appropriately adjust the seismic performance of a building. However, introducing seismic isolators at various storey levels is not a straightforward task, as it may lead to favourable or unfavourable structural behaviour depending on a large number of factors. As a consequence, a rather chaotic decision space of seismic isolation configurations arises, within which a favourable solution needs to be located. The search for favourable isolators' configurations is formulated in this work as a single‐objective optimization task. The aim of the optimization process is to minimize the maximum floor acceleration of the building under consideration, while constraints are specified to control the maximum interstorey drift, the maximum base displacement and the total seismic isolation cost. A genetic algorithm is implemented to perform this optimization task, which selectively introduces seismic isolators at various elevations, in order to identify the optimal configuration for the isolators satisfying the pre‐specified constraints. This way, optimized earthquake response of multi‐storey buildings can be obtained. The effectiveness of the proposed optimization procedure in the design of a seismically isolated structure is demonstrated in a numerical study using time‐history analyses of a typical six‐storey building. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号