首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   11篇
  国内免费   18篇
测绘学   9篇
大气科学   95篇
地球物理   119篇
地质学   156篇
海洋学   173篇
天文学   27篇
综合类   9篇
自然地理   14篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   12篇
  2019年   8篇
  2018年   29篇
  2017年   34篇
  2016年   43篇
  2015年   41篇
  2014年   36篇
  2013年   37篇
  2012年   34篇
  2011年   53篇
  2010年   43篇
  2009年   35篇
  2008年   26篇
  2007年   24篇
  2006年   25篇
  2005年   20篇
  2004年   12篇
  2003年   18篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有602条查询结果,搜索用时 0 毫秒
581.
Spatiotemporal changes in air temperature and humidity associated with the restoration of an inner-city stream in Seoul, Korea, are investigated based on long-term monitoring data. The Cheonggye stream, covered under a concrete structure for 46 years, was restored in 2005 and runs 5.8 km eastward through a central region of Seoul. Long-term monitoring of the air temperature and relative humidity was made along the stream throughout the restoration and across the stream after the restoration. The area along the stream had a higher air temperature than the entire metropolitan area. The temperature anomaly between the monitoring area and the surrounding metropolitan area was 0.13oC lower on average at the center of the stream after the restoration. The stream's effect on the air temperature was also evident in the temperature distribution along a street traversing the stream. The relative and specific humidities were increased due to the restoration. The restored stream modified the nearby urban climate in the opposite direction compared to urbanization. The results could be used as a model case in mitigating urban climate by a stream in future urban planning practices.  相似文献   
582.
In this study, we investigated the impact of the Atlantic decadal-scale sea surface temperature (SST) variation on the tropical Pacific climate using a Atmospheric General Circulation Model (AGCM). During the recent decade from 2000 to 2010 when the Atlantic SST has sharply increased, observations have shown that the strong easterly and increased precipitation anomalies appeared over the western-central Pacific. It is different from the conventional Gilltype response in which the easterly due to heating in the Atlantic is expected to be extended to the Indian Ocean. We have found that the warm pool over the western Pacific plays an important role in enhancing the atmospheric response to the Atlantic SST forcing in the Pacific basin. Simplified Aqua planet GCM experiments showed that the central location of the anomalous easterly over the Pacific produced by the Atlantic SST forcing highly depends on the location of the idealized warm pool. The reason for this is because the moisture feedback is strongest over the warm pool region, which leads to additional local anomalous convergence, and therefore the easterly produced by the Atlantic SST forcing is enhanced only over the east of the warm pool region.  相似文献   
583.
Simulated climate variables in a simple energy balance model subject to linearly increasing external forcing (due to increasing greenhouse gas emissions) and random internal forcings have been studied for more accurate climate prediction. The numerical method for such a system requires careful treatment of random forcings. Mathematical analyses show that the effect of random forcings should be diminished in the numerical integration method by the reciprocal of the root of the integration time step $ \left( {1/\sqrt {{\Delta t}} } \right) $ , which we call an attenuator. Our simulations consistently show that the attenuator desirably reduces variances of simulated climate variables and eliminates overestimation of the variances. However, the attenuator tends to bias the estimates of the climate feedback parameter obtained from a simple regression analysis of simulated variables toward unrealistically low values. This is because the reduced random forcings amplify the negative effect of a warming trend due to greenhouse emissions (when added to random forcing) on feedback estimation. Without the attenuator, the estimated feedback is much more accurate. The bias induced from the attenuator was largely resolved for the feedback estimation by the methodology of Lindzen and Choi (Asia-Pacific J Atmos Sci 47(4):377–390, 2011), which minimizes the negative effect of the warming trends by isolating short (few months) segments of increasing and decreasing temperature changes.  相似文献   
584.
This study compares the impacts of El Ni?o Modoki and El Ni?o on precipitation over Korea during the boreal winters from 1954 to 2009. Precipitation in Korea tends to be equal to or greater than the normal level during an El Ni?o Modoki winter, whereas there is no significant change during an El Ni?o winter. Greater than normal precipitation during El Ni?o Modoki was also found over the lower reaches of the Yangtze River, China and much of southern Japan. The latitudes of these regions are 5–10° further north than in southern China, where precipitation increases during El Ni?o. The following two anomalous atmospheric circulations were found to be causes that led to different precipitation distributions over East Asia. First, an atmospheric wave train in the lower troposphere, which propagated from the central tropical Pacific (cyclonic) through the southern Philippine Sea (anticyclonic) to East Asia (cyclonic), reached the southern China and northern Philippine Sea during El Ni?o, whereas it reached Korea and southern Japan during El Ni?o Modoki. Second, an anomalous local meridional circulation, which consists of air sinking in the tropics, flowing poleward in the lower troposphere, and rising in the subtropics, developed between the southern Philippine Sea and northern Philippine Sea during El Ni?o. During El Ni?o Modoki, however, this circulation expanded further to the north and was formed between the southern Philippine Sea and regions of Korea and southern Japan.  相似文献   
585.
A multiple-Doppler radar wind retrieval system is established by using a three dimensional variation method. The system consists of two parts. One is to interpolate reflectivities and radial velocities of nine Doppler radars of the Korea Meteorological Administration (KMA) into one analysis domain. The other is to retrieve three dimensional winds by minimizing a cost function that includes the following costs and constraints: the observed radial velocity cost, background wind cost, continuity constraint and smoothness constraint. In order to verify the performance of the system, retrieved winds are compared with observed winds obtained from five wind profilers of KMA. The performance of the system depends on the relative position to the baselines between Doppler radars. However, the performance of the system is enhanced when the number of overlaps among the radial velocities increases. The system is applied to the analysis of the evolution of a mesoscale convective system (MCS) on the Changma front on 1 July 2005. The analysis result shows that a new convective cell is developed by the convergence of the low troposphere winds at the organizing stage. The analysis of the vertical vorticity reveals that, among the two vorticity generation terms to be calculated utilizing the retrieved winds, tilting or twisting source dominates the divergence source in most convective regions. The strong downdrafts associated with the storm are produced on the downdraft branch of a meridional direction secondary circulation across the Changma front.  相似文献   
586.
Soil moisture state and variability control many hydrological and ecological processes as well as exchanges of energy and water between the land surface and the atmosphere. However, its state and variability are poorly understood at spatial scales larger than the fields (i.e. 1 km2) as well as the ability to extrapolate field scale to larger spatial scales. This study investigates soil moisture profiles, their spatial organization, and physical drivers of variability within the Walnut Creek watershed, Iowa, during Soil Moisture Experiment 2005 and relates the watershed scale findings to previous field‐scale results. For all depths, the watershed soil moisture variability was negatively correlated with the watershed mean soil moisture and followed an exponential relationship that was nearly identical to that for field scales. This relationship differed during drying and wetting. While the overall time stability characteristics were improved with observation depth, the relatively wet and dry locations were consistent for all depths. The most time stable locations, capturing the mean soil moisture of the watershed within ± 0·9% volumetric soil moisture, were typically found on hill slopes regardless of vegetation type. These mild slope locations consistently preserve the time stability patterns from field to watershed scales. Soil properties also appear to impact stability but the findings are sensitive to local variations that may not be well defined by existing soil maps. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
587.
The Bouwer and Rice method is a line-fitting method used to estimate the hydraulic conductivity of an aquifer by means of a slug test. When considering a relatively impermeable layer, called a filter cake, which may form at the interface between a cutoff wall and the natural soil formation, the assumptions of the Bouwer and Rice method are violated. A modification of the Bouwer and Rice method is proposed that incorporates the concept of a flow net, whereby the geometry of the cutoff wall and filter cake is effectively considered in estimating the hydraulic conductivity of a vertical cutoff wall.  相似文献   
588.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   
589.
590.
A comparison between half‐hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely, the Priestley–Taylor (P‐T), the reference Penman–Monteith (P‐M) and the Common Land Model (CLM), was conducted using three AmeriFlux sites under different land cover and climate conditions (i.e. arid grassland, temperate forest and subhumid cropland). Using the reference P‐M model with a semiempirical soil moisture function to adjust for water‐limiting conditions yielded ET estimates in reasonable agreement with the observations [root mean square error (RMSE) of 64–87 W m?2 for half‐hourly and RMSE of 0.5–1.9 mm day?1 for daily] and similar to the complex Common Land Model (RMSE of 60–94 W m?2 for half‐hourly and RMSE of 0.4–2.1 mm day?1 for daily) at the grassland and cropland sites. However, the semiempirical soil moisture function was not applicable particularly for the P‐T model at the forest site, suggesting that adjustments to key model variables may be required when applied to diverse land covers. On the other hand, under certain land cover/environmental conditions, the use of microwave‐derived soil moisture information was found to be a reliable metric of regional moisture conditions to adjust simple ET models for water‐limited cases. Further studies are needed to evaluate the utility of the simplified methods for different landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号