首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2098篇
  免费   80篇
  国内免费   19篇
测绘学   47篇
大气科学   138篇
地球物理   571篇
地质学   685篇
海洋学   201篇
天文学   394篇
综合类   6篇
自然地理   155篇
  2021年   22篇
  2020年   26篇
  2019年   29篇
  2018年   49篇
  2017年   41篇
  2016年   63篇
  2015年   39篇
  2014年   53篇
  2013年   105篇
  2012年   48篇
  2011年   75篇
  2010年   90篇
  2009年   91篇
  2008年   81篇
  2007年   96篇
  2006年   74篇
  2005年   68篇
  2004年   73篇
  2003年   73篇
  2002年   63篇
  2001年   39篇
  2000年   45篇
  1999年   39篇
  1998年   41篇
  1997年   33篇
  1996年   30篇
  1995年   32篇
  1994年   35篇
  1993年   21篇
  1992年   37篇
  1991年   38篇
  1990年   40篇
  1989年   33篇
  1988年   23篇
  1987年   26篇
  1986年   17篇
  1985年   35篇
  1984年   45篇
  1983年   32篇
  1982年   22篇
  1981年   33篇
  1980年   26篇
  1979年   24篇
  1978年   27篇
  1977年   16篇
  1976年   14篇
  1975年   15篇
  1974年   16篇
  1973年   15篇
  1971年   12篇
排序方式: 共有2197条查询结果,搜索用时 171 毫秒
21.
22.
On October 3 and 4, 1986, DSRVAlvin dives encountered a strong current at 2,300 m in South Wilmington Canyon. The current, estimated at 1 knot, transported surficial sediment and constructed and modified bedforms. It appears to have been constant in its direction of flow from 30 to 40°. The observed current was probably a burst of fast flow in a region of slow average currents in the Deep Western Boundary Undercurrent. Such episodic events may have a greater influence on the stratigraphic record than the temporally longer more tranquil flow conditions.  相似文献   
23.
The plot of210Pb activity against depth in carbonate sands on the Virgin Island Bank is a negative asymmetric hyperbolic curve. As depth increases, an initial rapid decrease in210Pb activity caused by the decay of unsupported210Pb and226Ra is followed by increasing activity as a result of210Pb achieving equilibrium with ingrowing230Th. As this curve is time dependent, an estimate of the relative ages in carbonate sequences and the rates of net carbonate accumulation can be made. The ease of210Pb activity determinations makes this procedure an attractive method in obtaining carbonate sand accumulation rates.  相似文献   
24.
25.
The sedimentary record of 130 km of microtidal (0.9 m tidal range) high wave energy (1.5 m average wave height) barrier island shoreline of the Cape Lookout cuspate foreland has been evaluated through examination of 3136 m of subsurface samples from closely spaced drill holes. Holocene sedimentation and coastal evolution has been a function of five major depositional processes: (1) eustatic sea-level rise and barrier-shoreline transgression; (2) lateral tidal inlet migration and reworking of barrier island deposits; (3) shoreface sedimentation and local barrier progradation; (4) storm washover deposition with infilling of shallow lagoons; and (5) flood-tidal delta sedimentation in back-barrier environments.

Twenty-five radiocarbon dates of subsurface peat and shell material from the Cape Lookout area are the basis for a late Holocene sea-level curve. From 9000 to 4000 B.P. eustatic sea level rose rapidly, resulting in landward migration of both barrier limbs of the cuspate foreland. A decline in the rate of sea-level rise since 4000 B.P. resulted in relative shoreline stabilization and deposition of contrasting coastal sedimentary sequences. The higher energy, storm-dominated northeast barrier limb (Core and Portsmouth Banks) has migrated landward producing a transgressive sequence of coarse-grained, horizontally bedded washover sands overlying burrowed to laminated back-barrier and lagoonal silty sands. Locally, ephemeral tidal inlets have reworked the transgressive barrier sequence depositing fining-upward spit platform and channel-fill sequences of cross-bedded, pebble gravel to fine sand and shell. Shoreface sedimentation along a portion of the lower energy, northwest barrier limb (Bogue Banks) has resulted in shoreline progradation and deposition of a coarsening-up sequence of burrowed to cross-bedded and laminated, fine-grained shoreface and foreshore sands. In contrast, the adjacent barrier island (Shackleford Banks) consists almost totally of inlet-fill sediments deposited by lateral tidal inlet migration. Holocene sediments in the shallow lagoons behind the barriers are 5–8 m thick fining-up sequences of interbedded burrowed, rooted and laminated flood-tidal delta, salt marsh, and washover sands, silts and clays.

While barrier island sequences are generally 10 m in thickness, inlet-fill sequences may be as much as 25 m thick and comprise an average of 35% of the Holocene sedimentary deposits. Tidal inlet-fill, back-barrier (including flood-tidal delta) and shoreface deposits are the most highly preservable facies in the wave-dominated barrier-shoreline setting. In the Cape Lookout cuspate foreland, these three facies account for over 80% of the sedimentary deposits preserved beneath the barriers. Foreshore, spit platform and overwash facies account for the remaining 20%.  相似文献   

26.
27.
The North Atlantic right whale, a seriously endangered species, is found in Cape Cod Bay (Massachusetts, USA) during the winter and early spring. During their residency in these waters, these whales are frequently observed feeding. This study evaluated spatial and temporal changes in the chemical composition (carbon weight and C/N ratio) of the food resource targeted by the right whales in Cape Cod Bay. The three taxa measured (Centropages typicus, Pseudocalanus spp., and Calanus finmarchicus) had highly variable chemical compositions resulting from the different life strategies and from fluctuations in their surrounding environment. The impact of seasonal variability in the energy densities of the food resource of right whales was calculated and compared to the energetic requirements of these whales. Calculations indicated that differences in the nutritional content of the zooplankton prey in Cape Cod Bay could have a considerable effect on the nutrition available to the right whales. Therefore, it is likely that using more precise estimates of the energetic densities of the prey of right whales would lead to a re‐evaluation of the adequacy of the food resource available to these whales in the North Atlantic.  相似文献   
28.
The copepods Neocalanus plumchrus, N. flemingeri, N. cristatus, and Eucalanus bungii dominate the net zooplankton throughout the subarctic Pacific Ocean. All four species have an extensive seasonal ontogenetic vertical migration, completing most or all of their feeding and somatic growth in spring and early summer. We used stratified tows with MOCNESS and BIONESS instrumented net systems to resolve their upper ocean vertical distributions in May and June of 1984, 1987 and 1988. In each year the feeding copepodite stages of all four species were concentrated above the permanent halocline (roughly from 0 to 150m). However, the four species showed strong vertical species zonation and segregation within this layer. We consistently found a near-surface pair (N. plumchrus and N. flemingeri) and a subsurface pair (N. cristatus and E. bungii). The boundary between these groups shifts vertically, but was sharply defined and was very often coincident with a weak and transient thermocline marking the base of the layer actively mixed by surface wind and wave energy. Diel vertical migration was very limited during our sampling periods.The data suggest that the vertical distribution patterns of the copepods could be set by responses to the local intensity of turbulent mixing in the watercolumn. N. plumchrus and N. flemingeri occupied a stratum characterized by strong turbulence. N. cristatus and E. bungii occupied a stratum that was a local minimum in turbulence profiles. The depth of the boundary between the species pairs was deeper when winds and surface energy inputs were strong. The vertical partition pattern may also be determined by a difference in feeding strategy between the species pairs. N. plumchrus and N. flemingeri may feed on the enhanced protozoan population of the mixed layer, while N. cristatus and E. bungii feed on particle aggregates settling from above.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号