首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   48篇
  国内免费   14篇
测绘学   33篇
大气科学   65篇
地球物理   311篇
地质学   336篇
海洋学   63篇
天文学   155篇
综合类   5篇
自然地理   62篇
  2023年   5篇
  2022年   23篇
  2021年   14篇
  2020年   27篇
  2019年   22篇
  2018年   47篇
  2017年   48篇
  2016年   51篇
  2015年   52篇
  2014年   65篇
  2013年   64篇
  2012年   63篇
  2011年   62篇
  2010年   61篇
  2009年   80篇
  2008年   57篇
  2007年   43篇
  2006年   30篇
  2005年   38篇
  2004年   25篇
  2003年   28篇
  2002年   26篇
  2001年   13篇
  2000年   7篇
  1999年   13篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   3篇
排序方式: 共有1030条查询结果,搜索用时 15 毫秒
71.
The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.  相似文献   
72.
A discussion of the transition from the ideal hexagonal mica structure to the ideal ditrigonal one, leads to the conclusion that the single mica layer may have two different structures (labelled A and B). The recent literature data show that both the A and B structures have been detected in some triocahedral layer lattice silicates found in nature. An examination of the structural stability of the A and B structures suggests that the last one may not be realized by dioctahedral layer lattice silicates. The concept of two structurally different mica layers, which however have the same lattice constants, greatly improves the understanding of polymorphism and twin laws in layer lattice silicates.The structural features of the tetrahedral sheet, octahedral sheet and interlayer region are carefully examined. Thus we can reach the following conclusions: the tetrahedal sheet is not entirely free to reduce its lateral dimensions by the mechanism of tetrahedal rotation owing to the repulsion among Obas atoms; the octahedral sheet in layer lattice silicates, may increase or reduce its lateral dimensions as compared to the lateral dimensions it has in the hydroxide minerals; the interlayer region is characterized by a regular octahedral coordination of the Obas around the interlayer cation. On the ground of these conclusions, new structural models for some selected layer lattice silicates are proposed.Notations Obas basal oxygen atoms of the (Al, Si)O4 tetrahedra - Oap apical oxygen atoms of the (Al, Si)O4 tetrahedra - b tetr b dimension which the tetrahedral sheet would assume if unconstrained - b oct b dimension which the octahedral sheet has in the hydroxide minerals - b obs observed value of b - c oct * thickness of the octahedral sheet - d o distance between an octahedral cation and an Oap atom - d int distance between an interlayer cation and an Obas atom - average tetrahedral rotation from ideal hexagonal symmetry  相似文献   
73.
Abstract– A method is described for imaging in 3‐D the interiors of meteoritic chromite grains and their inclusions using synchrotron radiation X‐ray tomographic microscopy. In ordinary chondrites, chromite is the only common mineral that survives long‐term weathering on Earth. Information about the silicate matrix of the original meteorite, however, can be derived from mineral inclusions preserved in the protecting chromite. The inclusions are crucial in the classification of fossil meteorites as well as sediment‐dispersed chromite grains from decomposed meteorites and larger impacts, as these are used for characterizing the past influx of material to Earth, but have previously been difficult to locate. The method is non‐destructive and time efficient for locating inclusions. The method allowed quantitative and morphological studies of both host chromite grains and inclusions in three dimensions. The study of 385 chromite grains from eight chondrites (H4–6, L4–6, LL4, LL6) reveals that inclusions are abundant and equally common in all samples. Almost two‐thirds of all chromite grains contain inclusions, regardless of group and type. The study also shows that the size of the inclusions and the host chromite grains, as well as the number of inclusions, within the host chromite grains vary with petrographic type. Thus, the petrographic type of the host of a suite of chromite grains can be determined based solely on inclusion content. The study also revealed that the amount of fractures in the host chromite can be correlated to previously assigned shock stages for the various chondrites. The study has thus shown that the features and inclusions of fossil chromite grains can give similar information about a former host meteorite as do studies of an unweathered whole meteorite, meaning that this technique is essential in the studies of ancient meteorite flux to Earth.  相似文献   
74.
In this article, we draw attention to trends in land transformation in the West Bank since the Second Intifada, after which a surge of investment from Gulf countries entered Palestine, almost exclusively in the West Bank. The occupied Palestinian territories have attracted a great deal of attention from media and academics, yet the vast majority of scholarship focuses on the conflict and the variety of social, economic, and political repercussions of the on-going Israeli occupation. While the occupation has undeniably serious impacts on every aspect of life for Palestinians, the near-exclusive focus on the conflict means that significant new trends, such as urban mega-developments and emerging market-based urbanisation processes, have been largely overlooked. We outline three directions for future research: the assemblage of “neglected city-builders” shaping current urbanization processes in Palestine; the ideas, policies, and norms circulating in the West Bank; and the social, spatial, economic, and other impacts of these new urban developments.  相似文献   
75.
76.
High-resolution white-light pictures are analyzed to study the differences between the granular size near sunspot penumbrae and in light-bridges presenting granular structure and that of the quiet photosphere. No difference is found between the mean granular diameter in light-bridges and the quiet photosphere. The dispersion found in the results corresponding to different zones around the sunspots indicates that the size of the granulation may vary from place to place near the sunspots, its mean value not differing significantly from that of the quiet photosphere. A possible systematic bias in the selection of the granules by Macris (1979) is found.  相似文献   
77.
78.
Patrick Michel  Marco Delbo 《Icarus》2010,209(2):520-534
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices.  相似文献   
79.
Experimental Validation of Modified Barton’s Model for Rock Fractures   总被引:2,自引:2,他引:0  
Among the constitutive models for rock fractures developed over the years, Barton’s empirical model has been widely used. Although Barton’s failure criterion predicts peak shear strength of rock fractures with acceptable precision, it has some limitations in estimating the peak shear displacement, post-peak shear strength, dilation, and surface degradation. The first author modified Barton’s original model in order to address these limitations. In this study, the modified Barton’s model (the peak shear displacement, the shear stress–displacement curve, and the dilation displacement) is validated by conducting a series of direct shear tests.  相似文献   
80.
The new mineral sardignaite, a bismuth molybdate with formula BiMo2O7(OH)·2H2O, occurs in quartz veins within a granitic rock at Su Senargiu, near Sarroch, Sardegna, Italy. The name is after the locality. Sardignaite occurs a thin prismatic crystals up to 1 mm in length, with pale yellow color and a white streak. It is transparent with adamantine lustre, non fluorescent, and brittle with a conchoidal fracture. It is associated with bismuthinite, bismoclite, molybdenite, ferrimolybdite, koechlinite, wulfenite, and the new mineral IMA 2009–022. Mohs hardness is ca. 3. D calc is 4.82 g/cm3. The mineral is monoclinic, space group P21/m, with a 5.7797(7), b 11.567(1), c 6.3344(8) Å, β 113.360(9)°, V 388.8(1) Å3. The strongest lines in the powder X-ray diffraction pattern are d(I)(hkl): 3.206(100)(031), 5.03(80)(?101), 1.992(45)(221), 3.120(32)(130). The crystal structure of sardignaite was solved to R(F) 0.056 using single-crystal X-ray diffraction data, and is characterized by edge-sharing dimers of [MoO5(H2O)] octahedra, linked to each other through corner-sharing to give rise to corrugated columns running along b. Such columns are held together by Bi3+ cations, eight-fold coordinated by 7 O + 1 (OH). Both the mineral and its name were approved by the IMA-CNMNC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号