首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   8篇
  国内免费   12篇
测绘学   6篇
大气科学   48篇
地球物理   53篇
地质学   90篇
海洋学   16篇
天文学   39篇
综合类   4篇
自然地理   13篇
  2024年   2篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   11篇
  2018年   12篇
  2017年   9篇
  2016年   20篇
  2015年   16篇
  2014年   23篇
  2013年   29篇
  2012年   16篇
  2011年   10篇
  2010年   13篇
  2009年   14篇
  2008年   11篇
  2007年   9篇
  2006年   12篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
171.
Surface fluxes, originating from forest patches, are commonly calculated from atmospheric flux measurements at some height above that patch using a correction for flux arising from upwind surfaces. Footprint models have been developed to calculate such a correction. These models commonly assume homogeneous turbulence, resulting in a simulated atmospheric flux equal to the average surface flux in the footprint area. However, atmospheric scalar fluxes downwind of a forest edge have been observed to exceed surface fluxes in the footprint area. Variations in atmospheric turbulence downwind of the forest edge, as simulated with an E – model, can explain enhanced atmospheric scalar fluxes. This E – model is used to calculate the footprint of atmospheric measurements downwind of a forest edge. Atmospheric fluxes appear mainly enhanced as a result of a stronger sensitivity to fluxes from the upwind surface. A sensitivity analysis shows that the fetch over forest, necessary to reach equilibrium between atmospheric fluxes and surface fluxes, tends to be longer for scalar fluxes as compared to momentum fluxes. With increasing forest density, atmospheric fluxes deviate even more strongly from surface fluxes, but over shorter fetches. It is concluded that scalar fluxes over forests are commonly affected by inhomogeneous turbulence over large fetches downwind of an edge. It is recommended to take horizontal variations in turbulence into account when the footprint is calculated for atmospheric flux measurements downwind of a forest edge. The spatially integrated footprint is recommended to describe the ratio between the atmospheric flux and the average surface flux in the footprint.  相似文献   
172.
In this study, published data on Lake Imandra, north-west Russia, have been synthesised to investigate trends in lake contamination and recovery due to changing inputs of heavy metals and nutrients over time. Records of water chemistry, phytoplankton, zooplankton and fish communities have been used to determine the status of aquatic ecosystem health in three distinct phases of Lake Imandra's recent history. Firstly, background (reference) conditions within the lake have been established to determine lake conditions prior to anthropogenic influences. Secondly, a period of ecosystem degradation due to anthropogenic inputs of toxic metals and nutrients has been described. Finally, evidence of lake recovery due to recent decreases of toxic metals and nutrients has been explored. Pollution of Lake Imandra began in the 1930s, reaching a peak in the 1980s. Increases in heavy metal and nutrient inputs transformed the typical Arctic ecosystem. During the contamination phase, there was a decrease in Arctic species and in biodiversity. During the last 10 years, pollution has decreased and the lake has been recolonised by Arctic water species. Ecosystem recovery is indicated by a change of predominant species, an increase in the individual mass of organisms and an increase in the biodiversity index of plankton communities. In accordance with Odum's ecosystem succession theory, this paper demonstrates that the ecosystem has transformed to a more stable condition with new defining parameters. This illustrates that the recovery of Arctic ecosystems towards pre-industrial reference conditions after a reduction in anthropogenic stresses occur, although a complete return to background conditions may not be achievable. Having determined the status of current ecosystem health within Lake Imandra, the effect of global warming on the recovery process is discussed. Climate warming in Arctic regions is likely to move the ecosystem towards a predominance of eurybiontic species in the community structure. These organisms have the ability to tolerate a wider range of environmental conditions than typical Arctic inhabitants and will gain advantages in development. This indicates that the full recovery of Arctic ecosystems in a warming climate may not be possible.  相似文献   
173.
Tlatov  Andrey G. 《Solar physics》2022,297(8):1-11
Solar Physics - A new open-source software, called SunMap, has been developed to obtain synoptic maps in an easy and quick way from multiple full-disc solar images. Our objective is to provide a...  相似文献   
174.
Recently observed changes in the Arctic have highlighted the need for a better understanding of Arctic dynamics. This research addresses that need and is also motivated by the recent finding of two regimes of Arctic ice - ocean wind-driven circulation. In this paper, we demonstrate that during 1946-1997 the Arctic environmental parameters have oscillated with a period of 10-15 years. Our results reveal significant differences among atmosphere, ice, and ocean processes during the anticyclonic and cyclonic regimes in the Arctic Ocean and its marginal seas. The oscillating behaviour of the Arctic Ocean we call the Arctic Ocean Oscillation (AOO). Based on existing data and results of numerical experiments, we conclude that during the anticyclonic circulation regime the prevailing processes lead to increases in atmospheric pressure, in ice concentration and ice thickness, river runoff, and surface water salinity - as well as to decreases in air temperature, wind speed, number of storms, precipitation, permafrost temperatures, coastal sea level, and surface water temperature. During the cyclonic circulation regime the prevailing processes lead to increased air and water temperatures, wind speed, number of storms,open water periods, and to decreases in ice thickness and ice concentration, river runoff, atmospheric pressure, and water salinity. The two-climate regime theory may help answer questions related to observed decadal variability of the Arctic Ocean and to reconcile the different conclusions among scientists who have analysed Arctic data obtained during different climate states.  相似文献   
175.
Major elements, S, F, Cl concentrations and relative proportions of S6+ to total S were analyzed with electron microprobe in sideromelane glass shards from Pleistocene volcaniclastic sediments drilled during ODP Leg 157. Glasses are moderately to strongly evolved and represent a spectrum from alkali basalt, basanite and nephelinite through hawaiite, mugearite and tephrite to phonolitic tephrite. Measured S6+/ΣS (0.03–0.98) and calculated Fe2+/Fe3+ (2.5–5.8) ratios in the melt yield preeruptive redox conditions ranging from NNO−1.4 to NNO+2.1. The morphology of the glass shards, variations of S and Cl concentrations (0.010–0.127 wt% S, 0.018–0.129 wt% Cl), calculated preeruptive temperatures (1030–1200 °C) and oxygen fugacities suggest that glasses deposited even within the same ash layers have diverse origin and may have resulted from both submarine and subaerial eruptions. Most vesicle-free glasses are characterized by high concentrations of S and represent undegassed or slightly degassed submarine lavas, whereas vesiculated glasses with low concentrations of S and Cl are strongly degassed and can be ascribed to the eruptions in shallow water or on land. Sideromelane glass shards at Sites 953 are thought to have resulted from submarine eruptions northeast of Gran Canaria, glasses at Site 954 represent mostly volcaniclastic material of shallow water submarine and subaerial eruptions on Gran Canaria and Tenerife, and glasses deposited at Site 956 resulted from submarine or explosive eruptions on Tenerife. Received: 8 April 1997 / Accepted: 27 October 1997  相似文献   
176.
Investigation of active faults is crucial for the seismic hazard assessment and, in the case of volcanic belts, it provides a deeper understanding of the interactions between volcanism and tectonic faulting. In this study, we report the results of the first paleoseismological and tephrochronological investigation undertaken on Holocene faulting in Kamchatka's volcanic belts. The studied trenches and additional excavations are located along the axial fault zone of the Eastern Volcanic Front, where the earlier dated tephra layers provide a robust age control of the faulting events. Electron microprobe analysis of glass from 22 tephra samples permitted correlations among the disparate tephra profiles for constructing a summary tephra sequence. The latter, together with published geochronological data, allowed the construction of a Bayesian age model. Detailed examination of the tephra layers deformed by faulting allowed us to reconstruct and date six faulting events with the offsets of 1 to 20 cm indicating paleoearthquakes with magnitudes of Mw < 5.4. Holocene crustal seismicity of the Eastern Volcanic Front manifests temporal clustering rather than a uniform flux of events. However, no correlation between dated seismic events and the largest Holocene eruptions of proximal volcanoes was observed.  相似文献   
177.
We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.  相似文献   
178.
179.
Frequency spectra of atmospheric turbulenceS (f) in the inertial subrange are considered in the free convection regime over the sea surface in a case of motionless instrument measurements (Eulerian frequency spectra). The frequency spectra formulaef * S (f)/ 2 =c (f */f)5/3 for wind velocity (=1–3), temperature (=t) and humidity (=e) fluctuations are derived on the basis of similarity theory and the –5/3 law. These relations also can be derived from a consideration of convective large-scale advection of small eddies. The frequency scalef * = (N 1 2/)1/2 (H/z 2)1/3 is the lower bound of the inertial subrange and it is of order 10–2 Hz.The spectra formulae are compared with direct measurements of atmospheric turbulence from the fixed research tower in the coastal zone of the Black Sea in calm weather. It is shown that these formulae are realized at least over two to three decades of the frequency range (approximately from 10–2 to 10 Hz) and values of the numerical coefficients are found. The derived formulae can be used for calculations of sensible and latent heat fluxes by measuring the high-frequency range of spectra at a fixed point at low wind speeds when the conventional inertial dissipation method is not applicable.  相似文献   
180.
Flow in the stable boundary layer is examined at four contrasting sites with greater upwind surface roughness. The surface heterogeneity is disorganized and in some cases weak as commonly occurs. With low wind speeds, the vertical divergence (or convergence) of the momentum and heat fluxes can be large near the surface in what is normally assumed to be the surface layer where such divergence is neglected. For the two most heterogeneous sites, a shallow “new” boundary layer is captured by the tower observations, analogous to an internal boundary layer but more complex. Above the new boundary layer, the magnitudes of the downward fluxes of heat and momentum increase with height in a transition layer, reach a maximum, and then decrease with height in an overlying regional boundary layer. Similar structure is observed at the site with rolling terrain where the shallow new boundary layer at the surface is identified as cold-air drainage generated by the local slope above which the flow undergoes transition to an overlying regional flow. Significant flux divergence near the surface is generated even over an ice floe for low wind speeds and in a shallow Ekman layer that forms during the polar night. For higher wind speeds, the magnitude of the downward fluxes decreases gradually with height at all levels as in a traditional boundary layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号