首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   39篇
  国内免费   14篇
测绘学   31篇
大气科学   75篇
地球物理   152篇
地质学   180篇
海洋学   36篇
天文学   109篇
综合类   3篇
自然地理   83篇
  2024年   3篇
  2023年   6篇
  2022年   4篇
  2021年   21篇
  2020年   18篇
  2019年   29篇
  2018年   41篇
  2017年   26篇
  2016年   40篇
  2015年   34篇
  2014年   26篇
  2013年   38篇
  2012年   28篇
  2011年   27篇
  2010年   30篇
  2009年   47篇
  2008年   31篇
  2007年   30篇
  2006年   17篇
  2005年   18篇
  2004年   15篇
  2003年   18篇
  2002年   11篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1973年   2篇
  1958年   1篇
排序方式: 共有669条查询结果,搜索用时 15 毫秒
501.
502.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   
503.
504.
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO‐DTS) observations and the phase shift of the diurnal temperature signal between two vertically co‐located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO‐DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO‐DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high‐spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates.  相似文献   
505.
Concurrent observations of waves at the base of a southern California coastal cliff and seismic cliff motion were used to explore wave–cliff interaction and test proxies for wave forcing on coastal cliffs. Time series of waves and sand levels at the cliff base were extracted from pressure sensor observations programmatically and used to compute various wave impact metrics (e.g. significant cliff base wave height). Wave–cliff interaction was controlled by tide, incident waves, and beach sand levels, and varied from low tides with no wave–cliff impacts, to high tides with continuous wave–cliff interaction. Observed cliff base wave heights differed from standard Normal and Rayleigh distributions. Cliff base wave spectra levels were elevated at sea swell and infragravity frequencies. Coastal cliff top response to wave impacts was characterized using microseismic shaking in a frequency band (20–45 Hz) sensitive to wave breaking and cliff impacts. Response in the 20–45 Hz band was well correlated with wave–cliff impact metrics including cliff base significant wave height and hourly maximum water depth at the cliff base (r2 = 0.75). With site‐specific calibration relating wave impacts and shaking, and acceptable anthropogenic (traffic) noise levels, cliff top seismic observations are a viable proxy for cliff base wave conditions. The methods presented here are applicable to other coastal settings and can provide coastal managers with real time coastal conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
506.
Experimental research was undertaken to investigate the changes in scales of turbulent eddies (macro- and microeddies) in a compound channel and the influence of rigid, emergent floodplain vegetation on scales of turbulent eddies. The results of eight tests for different roughness conditions (smooth bed, rough bed) and with a tree system on the floodplains from two earlier studies are presented. The increase of the channel roughness resulted in a decrease of longitudinal sizes of macroeddies in the whole channel. Trees on the floodplains resulted in disintegration of the sizes of macroeddies, making values of sizes more uniform. A more significant decreasing influence on sizes of macroeddies in the whole channel was exerted by an increase of the main channel sloping bank roughness, having a higher effect than a twofold decrease in the floodplain trees density. The microeddies’ sizes are larger in the main channel centreline than on the floodplains and the smallest ones were present in the main channel/floodplain interface.  相似文献   
507.
The paper addresses the problem of determination of the energy and momentum coefficients for flows through a partly vegetated channel. These coefficients are applied to express the fluid kinetic energy and momentum equations as functions of a mean velocity. The study is based on laboratory measurements of water velocity distributions in a straight rectangular flume with stiff and flexible stems and plastic imitations of the Canadian waterweed. The coefficients were established for the vegetation layer, surface layer and the whole flow area. The results indicate that the energy and momentum coefficients increase significantly with water depth and the number of stems per unit channel area. New regression relationships for both coefficients are given.  相似文献   
508.
Diel vertical migration (DVM) of medusae was investigated at a fixed station in the oligotrophic Southern Adriatic Sea at several depths during summer (July) 2003. We hypothesized that medusan DVM is considerably influenced by environmental variables such as hydrographic features, light intensities, and potential prey densities. We used short-term repetitive sampling as an approach to detail these relationships. Of the 26 species collected, the highest abundance was in the layer between the thermocline (15 m) and 100 m depth, where Rhopalonema velatum predominated, reaching the maximum count of 93 individuals per 10 m3. Seven species were observed over a wide depth range: Solmissus albescens (15–1200 m), R. velatum (0–800 m), Persa incolorata (50–1200 m), Octophialucium funerarium (200–1200 m), Arctapodema australis (200–1200 m), Amphinema rubra (100–800 m), and Rhabdoon singulare (15–600). According to the medusan weighted mean depth (WMD) calculations, the longest DVMs were noted for the deep-sea species S. albescens , O. funerarium , and A. australis . The shallowest species, Aglaura hemistoma , was primarily non-migratory. Certain medusan assemblages were associated consistently with a particular depth layer characterized by a particular light intensity. The interplay of environmental factors and trophic relationships explains some of the features of medusan migratory patterns. These findings thus contribute to understanding the variables that determine patterns of medusan vertical migratory behavior.  相似文献   
509.
Remote sensing techniques can decrease pest monitoring costs in orchards. To evaluate the feasibility of detecting spider mite damage in orchards, we measured visible and near infrared reflectance of 1153 leaves and 392 canopies in 11 peach orchards in California. Pairs of significant wavelengths, identified by Partial Least Squares regression, were combined into normalized difference indices. These and 9 previously published indices were evaluated for correlation with mite damage.  相似文献   
510.
The aim of this study was to detect and map MSV using RapidEye multispectral sensor in Ofcolaco farm. To achieve this objective, the acquired RapidEye sensor was classified using the robust Random Forest algorithm. Furthermore, the variable importance technique was used to determine the influence of each spectral band and indices on the mapping accuracy. For better performance of image data, the value of the commonly used vegetation indices in improving the classification accuracy was tested. The results revealed that the use of RapidEye spectral bands in detection and mapping of MSV yielded good classification results with an overall accuracy of 82.75%. The inclusion of vegetation indices computed from RapidEye sensor improved the classification accuracies by 3.4%. The most important RapidEye spectral bands in classifying MSV were near infrared, blue and red-edge. On the other hand, the most important vegetation indices were the Soil adjusted vegetation index, Enhanced vegetation index, Red index and Normalized Vegetation Index. The current study recommends future studies to assess the importance of multi-temporal remote sensing applications in detecting and monitoring the spread of MSV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号