首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   34篇
  国内免费   168篇
测绘学   1篇
大气科学   205篇
地球物理   13篇
地质学   6篇
海洋学   1篇
综合类   1篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2014年   7篇
  2013年   10篇
  2011年   3篇
  2010年   4篇
  2009年   10篇
  2008年   13篇
  2007年   10篇
  2006年   11篇
  2005年   14篇
  2004年   7篇
  2003年   9篇
  2002年   15篇
  2001年   10篇
  2000年   11篇
  1999年   10篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   9篇
  1994年   2篇
  1992年   9篇
  1991年   2篇
  1990年   10篇
  1989年   1篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1979年   1篇
排序方式: 共有227条查询结果,搜索用时 62 毫秒
81.
青藏高原加热如何影响亚洲夏季的气候格局   总被引:38,自引:14,他引:38  
从大气中的热力适应、局地尺度加热和大陆尺度加热的综合效应、高原地表的摩擦作用以及波动能源等不同角度,根据理论分析、资料诊断和数值模拟的结果,并通过与落基山和安第斯山的比较,回顾了青藏高原抬升加热影响亚洲气候格局的机理研究的近期进展.  相似文献   
82.
本文着重研究了线性模型中副热带环流对潜热加热的响应过程中影响高、低压系统中心位置的因子,剖析出边界层中基本流的垂直切变影响低层环流的根本原因,并且探讨了线性模式中基本流和静力稳定度自调整过程的重要作用.结果表明,在β效应和f效应、基本流在经向和垂直方向的二阶切变、以及东、西风基本流作用的非对称性等因素的共同作用下,高、低压中心位于热源北侧.结果还表明,当近地面基本流的垂直切变为零或者当风速随高度减小时,低层气旋和反气旋中心位于地面上,当风速随高度增大具有类似亚洲季风区的结构时,低层气旋和反气旋中心抬升离开地面;进一步考虑热源区附近静力稳定度和基本流自调整过程的作用后,反气旋中心继续抬升至中层,证明对流降水对其东侧对流层中低层副高的形成有重要贡献.指出基于传统线性准地转模式来研究副热带高压形成的缺陷在于应用不适当的下边界条件以及缺乏静力稳定度的自调整机制和基本流对热源的反馈机制,从而得到"潜热加热激发的低层反气旋中心位于洋面上"的不切实际的解.  相似文献   
83.
This study mainly introduces the development of the Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOALS-g2) and the preliminary evaluations of its performances based on results from the pre-industrial control run and four members of historical runs according to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiment design. The results suggest that many obvious improvements have been achieved by the FGOALS-g2 compared with the previous version,FGOALS-g1, including its climatological mean states, climate variability, and 20th century surface temperature evolution. For example,FGOALS-g2 better simulates the frequency of tropical land precipitation, East Asian Monsoon precipitation and its seasonal cycle, MJO and ENSO, which are closely related to the updated cumulus parameterization scheme, as well as the alleviation of uncertainties in some key parameters in shallow and deep convection schemes, cloud fraction, cloud macro/microphysical processes and the boundary layer scheme in its atmospheric model. The annual cycle of sea surface temperature along the equator in the Pacific is significantly improved in the new version. The sea ice salinity simulation is one of the unique characteristics of FGOALS-g2, although it is somehow inconsistent with empirical observations in the Antarctic.  相似文献   
84.
孟加拉湾季风爆发可预测性的分析和初步应用   总被引:4,自引:0,他引:4  
基于季风区对流层中高层副高脊附近的经向温度梯度能表征季节转换和季风爆发的物理本质这一事实,使用1980—1999年过渡季节期间(3~5月)逐日和月平均的NCEP/NCAR高空温度场再分析资料,对该温度梯度潜在的预报季风爆发进行了分析。结果表明:在已知初始时刻孟加拉湾季风区对流层中高层经向温度梯度的前提下,依据初始时刻的经向温度梯度和气候平均的经向增温率梯度,可以对孟加拉湾季风爆发的迟早做出定性预测。另外,由于孟加拉湾地区季风爆发日期与3月份青藏高原上空对流层中高层气温有显著相关,故前期高原上空对流层中高层的气温高低也是判断孟加拉湾季风爆发迟早的重要因子。对2000年和2001年孟加拉湾季风爆发迟早定性预测的结果表明,这两种预报方法具有潜在的应用价值。  相似文献   
85.
西太平洋副热带高压和台风相互作用的数值试验研究   总被引:11,自引:0,他引:11  
利用1958—1998年台风资料,对台风路径进行分类,挑选出3类常见路径作为研究对象,通过合成分析,证实不同的台风路径所对应的副热带高压(副高)形势不同。台风西行时,西太平洋副热带高压势力强大,呈东西向带状,台风沿着副高南部西行,副高在整个过程中西伸;转向路径时,副高开始呈东西向带状,随着台风的移动副高主体东退,在160°E附近中间断裂;北上路径的台风对应的副高主体偏东。在此基础上,利用气候模式R42L9在不同的初始场中加入相同的温度扰动,成功模拟出西行和北上路径的台风,验证了不同副高形态对台风路径的不同影响。对模拟结果的分析还发现,台风可以引起正压Rossby波向中高纬度的传播。由于背景流场不同,不同移动路径的台风其波动能量的传播路径也不同,从而对中高纬度环流和西太平洋副高产生不同的影响:与北上台风不同,西行台风在其西北方向激发出正变高,使西太平洋副高加强西伸。  相似文献   
86.
利用多套、多种再分析资料的逐日气候平均场,通过对比分析,揭示了青藏高原周边区域对流层顶分布及其季节演变的独特特征,并分析了其热力成因以及气候学效应。结果表明,与同纬度的落矶山和太平洋地区相比,青藏高原及伊朗高原区域对流层顶高度的冬夏变化幅度更大。冬季副热带对流层顶断裂带(热带对流层顶与极地对流层顶之间高度剧烈变化的过渡带)位于青藏与伊朗两个高原上空,春季开始两个高原上空对流层顶抬升迅速,夏季最高可超过热带对流层顶的高度(超过100 hPa),成为同纬度甚至全球对流层顶最高点。青藏与伊朗两个高原上空对流层顶的剧烈抬高,对应两个高原上空大气气柱比同纬度明显偏暖,同时伴随着青藏与伊朗两个高原上空位势涡度值的明显降低。因此,在青藏与伊朗两个高原区域,由春至夏等熵面强烈下凹,同时等位涡面剧烈抬升;夏季时等位涡面及对流层顶断裂带在青藏高原北部成近乎上下垂直分布,与南北倾斜分布的等位温面接近正交分布。这种特征与夏季同纬度其他地区相对平缓的对流层顶断裂带、等位涡面以及等熵面的经向分布形成强烈对比。进一步研究发现,青藏与伊朗两个高原上空由春至夏迅速发展的强大热源是引起上述对流层顶变化特征的主要原因。不同的是,青藏高原上空主要由发展强烈的对流凝结潜热所主导,而伊朗高原上空则主要由绝热下沉加热引起;此外,由春季至夏季,随着青藏高原地区对流层顶与等熵面剧烈相交分布的形成,南亚高压也逐步控制青藏高原上空,在南亚高压东缘盛行的偏北气流作用下,中高纬度平流层的高位涡空气得以在青藏高原东缘及东亚地区沿剧烈倾斜的等熵面被输送到较低纬度的对流层。与降水的季节演变对比可知,平流层高位涡输送的出现、加强和减弱与夏季降水的发展、加强与减弱成同步对应关系。从而证实了青藏高原影响夏季东亚地区形成独特气候格局的事实,说明在这种影响过程中,平流层-对流层动力相互作用过程不可忽视。   相似文献   
87.
副热带高压研究回顾及对几个基本问题的再认识   总被引:41,自引:3,他引:41  
刘屹岷  吴国雄 《气象学报》2000,58(4):500-512
文中在回顾有关副热带高压研究的基础上 ,指出传统的观念在东太平洋副热带高压和西太平洋副热带高压的关系、下沉运动和副热带高压的形成、热带加热异常与副热带高压异常的关系、副热带高压与其周边系统的关系等问题上存在一定的局限。并根据近期的研究成果对上述问题给出新的认识。最后文中展望了在副热带高压的研究中需进一步深入的几个方面 :不同纬度相互作用、青藏高原的作用、时间尺度 -内部动力过程和外界强迫的相对重要性、非线性过程和角动量平衡问题。  相似文献   
88.
本文使用经过青藏高原气象科学实验测站观测资料订正过的欧洲中心FGGE-Ⅲb资料,对1979年夏季青藏高原地区进行了涡度方程诊断分析,研究了它们的月际变化、逐日变化和日变化,与高原上积云对流活动的强弱变化进行了比较,讨论了夏季高原稳定的环流场维持的物理机制;同时还对同时期热带赤道地区强对流活动区域进行了涡度方程诊断分析,将其涡旋环流场的维持机制与夏季高原地区进行了比较. 通过分析,发现夏季青藏高原月平均涡度方程平衡关系主要是次网格尺度项和散度项的平衡,水平平流项的耗散作用在高空较强,但不如次网格尺度项强,涡度方程其余各项均很小.从月际变化、逐日变化和日变化的比较,发现当积云对流活动发生强弱变化时,ω、D和涡度方程中的散度项、次网格尺度项均伴随很强的相应变化,对应关系很好,说明涡度方程中的次网格尺度项R(余差项)的主要部分来源于积云对流系统的活动,反映了夏季高原上存在的强盛频繁的积云对流活动对高原平均环流场的形成和维持具有重要的作用. 使夏季青藏高原高低层环流场加强的物理机制足高低层气流强大的辐散辐合,耗散机制是积云对流系统对高低层涡度的上下搅拌垂直输送作用和网格尺度水平平流项的非线性耗散作用,其中前者起主要的作用. 从涡旋能量维持的角度看,夏季青藏高原高低层环流场的维持大致是高原尺度环流系统的涡旋能量通过非线性过程,分别向高原区域以外更大尺度的系统和次网格尺度的对流系统输送,输送的损失由强大的高低层辐散辐合气流产生的涡旋能量补充,从而维持了高原地区环流场的稳定.赤道附近热带强对流活动区域环流场的维持机制与夏季高原地区的不同点,主要表现在其高层和低层的区域尺度环流场通过非线性作用都从更大尺度环流场得到涡旋能量,并把涡旋能量转送给次网格尺度积云对流系统,使自身维持稳定.  相似文献   
89.
本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, 简称ECMWF)提供的ERA-Interim再分析数据集和FGOALS-f3-L海气耦合模式,分析了1980~2017年梅雨期长江中下游地区对流层大气湿位涡(MPV)的分布特征及其与青藏高原的联系。研究发现,梅雨期湿等熵面在长江中下游地区呈自下而上向北倾斜的分布特征,湿位涡正压项(MPV1)和斜压项(MPV2)的大值带均沿倾斜的湿等熵面分布在梅雨区上空,且随雨带的北移而北移。对流层中层MPV1和MPV2大值带均分布在梅雨雨带的北侧,而对流层低层MPV2负值带与梅雨雨带近乎重合。这主要是由于入梅前后MPV2的分布结构满足倾斜涡度发展的必要条件,有利于暖湿空气沿湿等熵面上滑,从而导致暖湿空气的垂直涡度显著增强,造成梅雨降水。进一步分析发现MPV2负值带西起青藏高原向东经过江淮地区一直延伸到西北太平洋地区。数值试验结果表明青藏高原大地形条件对MPV2负值带的形成有重要影响,当去掉高原地形时,长江中下游地区的MPV2负值带显著减弱甚至消失。  相似文献   
90.
中尺度海-气相互作用对台风暴雨过程的影响研究   总被引:12,自引:4,他引:12       下载免费PDF全文
利用中尺度海-气耦合模式MCM对两个典型台风过程进行了数值模拟试验,定量地分析了海-气相互作用对台风暴雨的影响,并探讨了这一影响的物理机制。结果表明,模式MCM能成功模拟台风的路径、强度以及台风暴雨的落时、落区。考虑海-气相互作用能使台风中心气压48和72 h分别回升9.9和3.5 hPa,使后续时段的台风对流性降水减小40~100 mm,还明显改变了非对流性降水分布。耦合与非耦合试验对比分析初步表明,海-气相互作用影响台风暴雨的机制是一种通过台风大风区附近海平面温度(SST)下降来调节的负反馈机制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号