首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   1篇
  国内免费   1篇
测绘学   3篇
大气科学   73篇
地球物理   44篇
地质学   63篇
海洋学   21篇
天文学   28篇
综合类   29篇
自然地理   2篇
  2014年   24篇
  2013年   13篇
  2011年   217篇
  2010年   2篇
  2008年   5篇
  2001年   1篇
  1960年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
81.
Three structural profiles across the Coastal Terrane, the Boundary Igneous Complex and the Orogen Core have been studied in the Kaoko Belt of northwestern Namibia. The oldest known Si fabric is inherited from an older tectono-metamorphic event. It occurs in the Coastal Terrane only and the extent of its reworking increases from south to north. The S1 foliation reactivates or folds Si fabric in the Coastal Terrane and appears as an early planar fabric in granitoids of the Boundary Igneous Complex and migmatites of the Orogen Core domain. Superimposed subvertical S2 fabric corresponds to axial plane cleavage of upright close to isoclinal folds and the extent of its development also increases from south to north. Active migration of partial melt during S2 development in the Orogen Core dates the onset of this deformation at ~550?Ma. Distribution of F2 fold axes and L2 stretching lineations suggests pure shear?Cdominated deformation associated with development of N?CS trending S2 cleavage preserved in the central profile, followed by sinistral simple shear?Cdominated deformation on newly developed NW?CSE trending pervasive cleavage in the northern part of the area. Such spatial variation in the deformation record is attributed to the irregular shape of the Congo Craton indenter that is reflected by heterogeneous development of the S2 cleavage front in the Coastal Terrane and the Boundary Igneous Complex. Common orientation of L1 and L2 stretching lineations and solid-state reworking on both S1 and S2 planes suggest single event of sinistral transpression since 550?Ma with strain partitioning into domains of oblique thrusting (reactivated S1) and transcurrent sinistral shearing (S2 and S3). Such succession of deformation structures suggests that major subvertical shear zones in the Kaoko Belt do not correspond to early crustal discontinuities, but rather reflect late strain localization during cooling.  相似文献   
82.
The Cryogenian to Uppermost Ediacaran successions of the Tandilia System (Sierras Bayas Group and Cerro Negro Formation) in central-eastern Argentina is exceptional because of its unmetamorphosed and nearly undeformed character, its sediment provenance trend and the absence of any identified glacial deposit and the deposition of warm water carbonates. We decipher a dramatic change in the basin evolution from small-scale depositional areas during the Neoproterozoic to a larger basin related to an active continental margin throughout the Uppermost Ediacaran. The base of the succession is represented by immature detritus of alkaline composition (Villa Mónica Formation), but towards the top of this formation, the material is sorted and reworked, nonetheless still reflecting in its detritus the local rocks. The clastic deposition is interrupted by diagenetic overprinted dolomites. The unconformable overlying quartz-arenitic Ediacaran Cerro Largo Formation reworked the Cryogenian Villa Mónica Formation and contains mainly felsic granitic and metamorphic basement material of slightly wider variety, while the dominant alkaline geochemical signature in rocks of the Villa Mónica Formation disappears. Based on diagenetic, petrographic and sedimentological data, we can interpret the unconformity representing a longer time of erosion. The Cerro Largo Formation shows a transition to mudstones and the heterolithic facies of the Olavarría Formation. The top of the Sierras Bayas Group is represented by limestones (Loma Negra Formation), which are discordantly overlain by the Uppermost Ediacaran Cerro Negro Formation. The latter displays detrital material derived from a continental arc, mafic and felsic sources. Several arc-related geochemical proxies (Th/Sc?<?0.8; Zr/Sc?<?10; La/Sc?<?2; Ti/Zr?>?20) are recorded in the sediment detritus, as are syn-depositional pyroclastites. The absence of volcanic material in the underlying rocks allows proposing that the Cerro Negro Formation is related to an active continental margin fringing Gondwana (??Terra Australis Orogen??) as a retro-arc or retro-arc foreland basin.  相似文献   
83.
On November 4, 2007, a large block slide occurred on the south face of the Cerro La Pera at San Juan Grijalva (SJG), northwest Chiapas, Mexico. The SJG landslide has an area of 1.11 km2 and a volume of 50 Mm3, making it one of the largest landslide of its type in the twentieth century. The landslide created a dam over 80 m high and 1,170 m wide across the Grijalva River, backing up the water and forming a 49 km2 lake. Landslide-generated tsunamis up to 15 m high destroyed the village of SJG, and the newly formed lake flooded 21 villages located upstream. The landslide killed 16 people and caused around 3,600 to be evacuated with incalculable economic losses. It was perhaps the most catastrophic landslide in the history of Mexico. The probable trigger of the landslide was cumulative precipitation of about 67% of the average annual rainfall over the preceding 30 days. The associated potentially causative factors include a M4.5 earthquake that occurred 5 days before the landslide and a water-level drawdown at the Grijalva River generated by the release of water from the Pe?itas dam located 14 km downstream.  相似文献   
84.
Based on new multibeam bathymetric data, seismic-reflection profiles and side-scan sonar images, a great number of submarine failures of various types and sizes was identified along the northern margin of the Ligurian Basin and characterized with 3 distinct end-members concerning their location on the margin, sedimentary processes and possible triggering mechanisms. They include superficial landslides mainly located in the vicinity of the main mountain-supplied rivers and on the inner walls of canyons (typically smaller that 108 m3 in volume: Type 1), deep scars 100?C500 m high along the base of the continental slope (Type 2), and large-scale scars and Mass Transport Deposits (MTDs) affecting the upper part of the slope (Type 3 failures). The MTDs are located in different environmental contexts of the margin, including the deep Var Sedimentary Ridge (VSR) and the upper part of the continental slope in the Gulf of Genova (Finale Slide and Portofino Slide), with volumes of missing sediment reaching up to 1.5 × 109 m3. High sedimentation rates related to hyperpycnal flows, faults and earthquake activity, together with sea-level fluctuations are the main factors invoked to explain the distribution and sizes of these different failure types.  相似文献   
85.
The seafloor of the Alboran Sea in the western Mediterranean is disrupted by deformations resulting from convergence between the African and Eurasian plates. Based on a compilation of existing and new multibeam bathymetry data and high-resolution seismic profiles, our main objective was to characterize the most recent structures in the central sector, which depicts an abrupt morphology and was chosen to investigate how active tectonic processes are shaping the seafloor. The Alboran Ridge is the most prominent feature in the Alboran Sea (>130 km in length), and a key element in the Gibraltar Arc System. Recent uplift and deformation in this ridge have been caused by sub-vertical, strike-slip and reverse faults with associated folding in the most recent sediments, their trend shifting progressively from SW–NE to WNW–ESE towards the Yusuf Lineament. Present-day transtensive deformation induces faulting and subsidence in the Yusuf pull-apart basin. The Alboran Ridge and Yusuf fault zones are connected, and both constitute a wide zone of deformation reaching tens of kilometres in width and showing a complex geometry, including different active fault segments and in-relay folds. These findings demonstrate that Recent deformation is more heterogeneously distributed than commonly considered. A narrow SSW–NNE zone with folding and reverse faulting cuts across the western end of the Alboran Ridge and concentrates most of the upper crustal seismicity in the region. This zone of deformation defines a seismogenic, left-lateral fault zone connected to the south with the Al Hoceima seismic swarm, and representing a potential seismic hazard. Newly detected buried and active submarine slides along the Alboran Ridge and the Yusuf Lineament are clear signs of submarine slope instability in this seismically active region.  相似文献   
86.
In this study, the fossil microfaunal composition of 28 Recent sediment samples from Lake İznik and 19 samples from Lake Sapanca was investigated. The presence of at least ten marine ostracod and 23 foraminifer species in the sediments of Lake İznik, and at least one marine ostracod and two foraminifer species in the sediments of Lake Sapanca confirm that these lakes must have been connected to the world ocean sometime during the late Quaternary. The most obvious former link between these lakes and the Mediterranean Sea would have been via the Marmara Sea with an eastward extension of the Gemlik and İzmit bays. The proximity of Lake Sapanca to the lower course of the Sakarya River, however, also supports earlier suggestions that there may have been a temporary connection with the Black Sea via this river valley. Whatever the case, the findings of this study clearly demonstrate that vertical tectonic movements need to be taken into account when reconstructing the late Quaternary sea-level history of this region.  相似文献   
87.
Submarine groundwater discharge in coastal settings can massively modify the hydraulic and geochemical conditions of the seafloor. Resulting local anomalies in the morphology and physical properties of surface sediments are usually explored with seismo-acoustic imaging techniques. Controlled source electromagnetic imaging offers an innovative dual approach to seep characterization by its ability to detect pore-water electrical conductivity, hence salinity, as well as sediment magnetic susceptibility, hence preservation or diagenetic alteration of iron oxides. The newly developed electromagnetic (EM) profiler Neridis II successfully realized this concept for a first time with a high-resolution survey of freshwater seeps in Eckernf?rde Bay (SW Baltic Sea). We demonstrate that EM profiling, complemented and validated by acoustic as well as sample-based rock magnetic and geochemical methods, can create a crisp and revealing fingerprint image of freshwater seepage and related reductive alteration of near-surface sediments. Our findings imply that (1) freshwater penetrates the pore space of Holocene mud sediments by both diffuse and focused advection, (2) pockmarks are marked by focused freshwater seepage, underlying sand highs, reduced mud thickness, higher porosity, fining of grain size, and anoxic conditions, (3) depletion of Fe oxides, especially magnetite, is more pervasive within pockmarks due to higher concentrations of organic and sulfidic reaction partners, and (4) freshwater advection reduces sediment magnetic susceptibility by a combination of pore-water injection (dilution) and magnetite reduction (depletion). The conductivity vs. susceptibility biplot resolves subtle lateral litho- and hydrofacies variations.  相似文献   
88.
Multibeam echosounder data and TOPAS seismic reflection profiles collected during the AntPac 1997, Scan 2004, and Scan 2008 cruises aboard the RV Hespérides reveal a host of surficial geomorphological features as yet poorly investigated in the Scan Basin, south-central Scotia Sea. This area represents one of the deep gateways between the Weddell Sea and the Scotia Sea, since it enables the northward flow of a branch of the Weddell Sea Deep Water (WSDW). Analysis of the data identifies numerous elongated depressions interpreted as furrows in the southernmost sector of the basin. These furrows show two main trends, i.e., either N?CNNW parallel to, or NE oblique to regional bathymetric contours. These trends plausibly reflect a tectonic influence on the bottom-flow distribution, conditioned by a set of recent, conjugate strike-slip faults that developed on the seafloor under dominant NNE?CSSW compression and orthogonal extension. The furrows exhibit distinct geomorphological patterns at either side of the basin, which can be related to west?Ceast asymmetry in the WSDW flow direction. Consistent with existing knowledge of regional WSDW dynamics, northward WSDW overflows would be channeled along the western part of the basin at higher bottom-current velocities, thereby generating more erosional-type furrows that are straighter, more elongated, and have more abrupt sidewalls than their eastern counterparts. In contrast, weaker southward WSDW would flow along the eastern part of the basin, resulting in more depositional-type furrows that are more curved, less elongated, and have gentler sidewalls.  相似文献   
89.
The study of more than 500 single- and multichannel seismic records enabled the generation of a detailed palaeo-bathymetric map of the Messinian surface over most of the Alboran Basin, Western Mediterranean. This regional surface is characterized by several erosional features (channels, terraces and canyons) and topographic highs (structural, volcanic and diapiric in origin). The most prominent feature is the incised Zanclean Channel crossing the entire basin, its entrenchment having been associated with the opening of the Strait of Gibraltar and subsequent inflow of Atlantic waters. The incision depth of the channel is variable, suggesting local variations in the erosive capacity of the Atlantic inflow, conditioned mainly by the regional basin topography and the local presence of topographic highs. Adjacent to this channel along the Spanish and Moroccan margins, and near the Strait of Gibraltar, several submarine terraces developed at different depths suggest a pulsed flooding of the Alboran Basin. There could have been two major inflow phases of Atlantic water, one shortly before and another during the Zanclean flooding, the latter accompanied by periods of relative sea-level stillstands that enabled terrace development. Alternatively, these features were all generated during the main flooding evident and subsequent pulsed infilling of the basin.  相似文献   
90.
Topographic control on the nascent Mediterranean outflow   总被引:1,自引:1,他引:0  
Data collected during a 12-day cruise in July 2009 served to examine the structure of the nascent Mediterranean Outflow Water (MOW) immediately west of the Espartel Sill, the westernmost sill in the Strait of Gibraltar. The MOW is characterized by high salinities (>37.0 and reaching 38.3) and high velocities (exceeding 1?m s?1 at 100?m above the seafloor), and follows a submerged valley along a 30?km stretch, the natural western extension of the strait. It is approx. 150?m thick and 10?km wide, and experiences a substantial drop from 420 to 530?m over a distance of some 3?km between two relatively flat regions. Measurements indicate that the nascent MOW behaves as a gravity current with nearly maximal traveling speed; if this condition is maintained, then the maximum MOW velocity would decrease slowly with distance from the Espartel Sill, remaining significantly high until the gravity current excess density is only a small fraction of its original value. The sharp pycnocline between the Mediterranean and the overlying North Atlantic Central waters is dynamically unstable, particularly where the flow interacts with the 100?m decrease in bottom depth. Here, subcritical gradient Richardson numbers coincide with the development of large interfacial undulations and billows. The very energetic downslope flow is likely responsible for the development of a narrow V-shaped channel downstream of the seafloor drop along the axis of the submerged valley, this probably being the very first erosional scour produced by the nascent MOW. The coincidence of subcritical gradient Richardson numbers with relatively high turbidity values above the channel flanks suggests it may be undergoing upstream erosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号