首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
天文学   76篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   5篇
  1968年   2篇
  1967年   1篇
排序方式: 共有76条查询结果,搜索用时 359 毫秒
31.
Kocharov  L. G.  Torsti  J.  Tang  F.  Zirin  H.  Kovaltsov  G. A.  Usoskin  I. G. 《Solar physics》1997,172(1-2):271-278
This paper demonstrates the important interplanetary manifestation of strongly tilted magnetic fields at the flare site. We start with analysis of Big Bear Solar Observatory (BBSO) observations of magnetic structures at sites of two flares responsible for >100 MeV neutron events. Based on these observations, a model of neutron production is considered. This model takes into account the observed large tilt of magnetic field lines at footpoints of flare magnetic loops. Results of the new calculations are compared with both previous calculations and observations. The tilt of magnetic field lines at the flare site is proved to be the most important parameter limiting anisotropy of high-energy secondary emission in solar flares.  相似文献   
32.
Zirin  Harold 《Solar physics》1999,184(2):249-252
We show how the apparent reversal of longitudinal magnetic fields near the limb is a projection effect and may be used to estimate the divergence angle of the magnetic canopy. The limb distance at which the apparent reversal is not seen is the limiting angle of divergence of lines of force emerging from the surface. We have surveyed a number of polar limb magnetograms, where the unipolar field makes this easier, and found the divergence angle to be about 20° from the vertical.  相似文献   
33.
Using eighteen years of observations at Big Bear, we summarize the development of δ spots and the great flares they produce. We find δ groups to develop in three ways: eruption of a single complex active region formed below the surface, eruption of large satellite spots near (particularly in front of) a large older spot, or collision of spots of opposite polarity from different dipoles. Our sample of twenty-one δ spots shows that once they lock together, they never separate, although rarely an umbra is ejected. The δ spots are already disposed to their final form when they emerge. The driving force for the shear is spot motion, either flux emergence or the forward motion of p spots in an inverted magnetic configuration. We observe the following phenomena preceding great flares:
  1. δ spots, preferentially Types 1 and 2.
  2. Umbrae obscured by Hα emission.
  3. Bright Hα emission marking flux emergence and reconnection.
  4. Greatly sheared magnetic configurations, marked by penumbral and Hα fibrils parallel to the inversion line.
We assert that with adequate spatial resolution one may predict the occurrence of great flares with these indicators.  相似文献   
34.
A small continuum bright point, observed at the outer edge of the penumbra of a small spot in a large complex spot group, is related to an occurrence beneath the Sun's surface. The characteristics of the point appear to be unique, and the name penumbra-periphery bright point is proposed.  相似文献   
35.
H. Zirin 《Solar physics》1983,86(1-2):173-184
Optical observationd now present considerable information on the flare process. It is always associated with filaments and with simplification of existing magnetic connections, and it arises from the emergence and expansion of new flux. The optical flare divides into impulsive phase, with multiple flashes along the neutral line, and thermal phase, with two-ribbon expansion. The former bears some resemblance to tearing mode phenomena. The appearance of loops in emission requires very high densities in those phenomena. The ratios of the hydrogen lines, the excitation of HeII 4686, and the relation of vertical to horizontal structure all remain to be explained.  相似文献   
36.
37.
We analyze large-scale H-alpha movies of the large spot group of Sept. 13–26, 1963, together with radio, ionospheric and magnetic field data as well as white light pictures. The evolution of the group and associated magnetic fields is followed, and the positions of solar flares relative to the fields are noted, along with their morphology. Although the magnetic field is deformed in time, characteristic field structures may be traced through the deformation as the seat of recurrent homologous flares.We find that most flares are homologous, and some are triggered by disturbances elsewhere in the region. We note events produced by surges falling back to the surface, and one flare initiated by a bright bead seen to fly across the region. In almost every case of an isolated type III radio burst, a corresponding H-alpha brightening could be found, but not all flares produced bursts. Flares close to the sunspots are most likely to produce radio bursts. Flare surface waves in the region all travel out to the west, because of more open magnetic field structure there. In one case (Sept. 25) a wave is turned back by the closed field structure to the east.In almost all cases the time association of radio or ionospheric events is with the beginning of the flare or with the flash phase.Several morphological classes of flares are noted as recurrent types.  相似文献   
38.
We made a parameter fit to the Haleakala neutron monitor counting rate during the 1991 March 22 solar flare (Pyle and Simpson, 1991) using the time profiles of -rays at 0.42–80 MeV obtained with the GRANAT satellite (Vilmeret al., 1994) and the microwave data from Owens Valley Radio Observatory. We use a two-component neutron injection function to find that either an impulsive injection or the impulsive-plus-prolonged neutron injection is possible. In both cases, the number of > 300 MeV neutrons emitted towards the Earth is estimated as 2 × 1027 sr–1, which is less than that of the 1990 May 24 flare by an order of magnitude.We tested if such a big difference in neutron number detected on the Earth can be accounted for solely by their different positions on the solar disk. For the estimation of the degree of anisotropy of high-energy secondary emission, we made use of macroscopic parameters of the flare active region, in particular, the vector magnetogram data from the Big Bear Solar Observatory. In our result, the anisotropy factor for the neutral emissions of the 1991 March 22 flare is only 1 – 10, which is rather small compared with previous theoretical predictions for a disk flare. Such a moderate anisotropy is due to the relatively large inclination angles of the magnetic fields at the footpoints of the flaring loop where accelerated particles are trapped. We thus concluded that the smaller number of neutrons of the 1991 March 22 flare would be not only due to its location on the disk, but also due to fewer protons accelerated during this event as compared with the 1990 May 24 limb event. For a more precise determination of the anisotropy factor in a flare, we need a detailed spectrum of electron bremsstrahlung in 0.1 – 10 MeV and the fluence of -ray emission from the 0-decay.Visting Associate from St. Petersburg State Technical University, St. Petersburg, 195251, Russia.  相似文献   
39.
We report peculiar spectral activity of four large microwave bursts as obtained from the Solar Arrays at the Owens Valley Radio Observatory during observations of X-class flares on 1990 May 24 and 1991 March 7, 8, and 22. Main observational points that we newly uncovered are: (1) flat flux spectra over 1–18 GHz in large amounts of flux ranging from 102 to 104 s.f.u. at the maximum phase, (2) a common evolutionary pattern in which the spectral region of dominant flux shifts from high frequencies at the initial rise to low frequencies at the decaying phase, and (3) unusual time profiles that are impulsive at high frequencies but more extended at lower frequencies.In an attempt to elucidate these new properties, we carry out the model calculations of microwave spectra under assumptions of gyrosynchrotron mechanism and a dipole field configuration to reproduce the observational characteristics. Our results are summarized as follows. First, a flat microwave spectrum reaching up to 102–104 s.f.u. may occur in a case where a magnetic loop is extended to an angular size of (0.7–7.0) × 10–7 sterad and contains a huge number (N(E > 10 keV) 1036– 1038) of nonthermal electrons with power-law index 3–3.5 over the entire volume. Second, the observed spectral activity could adequately be accounted for by the shrinking of the region of nonthermal electrons to the loop top and by the softening of the power-law spectrum of electrons in a time scale ranging 3–45 min depending on the event. Third, the extended microwave activity at lower frequencies is probably due to electrons trapped in the loop top where magnetic fields are low. Finally, we clarify the physical distinction between these large, extended microwave bursts and the gradual/post-microwave bursts often seen in weak events, both of which are characterized by long-period activity and broadband spectra.  相似文献   
40.
We describe our BEARALERT program of predicting solar flares or rapid development of activity in certain sunspot groups. The purpose of the program is to test our understanding of the flare process by making public predictions via electronic mail. Neither the exact timing of the flare nor the possibility of emergence of new active regions can be predicted. But high-resolution observations of the magnetic configuration, Ha brightness and structure and other properties of a region enabled us to announce the onset of 15 of 23 major active regions over a two-year period, and 15 of 32 BEARALERTS were followed by this activity. We used high-resolution real-time data available at the Big Bear Solar Observatory (BBSO). The criteria for prediction are given and discussed, along with those for filament eruption.The success fo the BEARALERT is evaluated by counting the M- and X-class flares in six days following the alert and comparing these results with those of a number of other predictive schemes. We find the single regions chosen had about 30% more flares than the whole disk on random days, or several times more than individual regions chosen at random. There was a gain of 1.5 to 2.0 times in flare frequency compared to regions selected by spot size or complexity. We also find an improvement of 20–40% over large or complex regions that have had some flares already. The ratio of improvement has increased with time as we gained experience. In the 24-hr period following each alert, one or more M-class or greater flares occurred 72% of the time.We also checked the possibility of prediction by the 152-day interval which some workers have claimed, but found those results slightly worse than random and considerably inferior to the BEARALERTS. All of the particularly active regions that were missed either occurred during bad weather at BBSO or were missed because we only issued alerts for one region at a time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号