首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1109篇
  免费   190篇
  国内免费   309篇
测绘学   51篇
大气科学   277篇
地球物理   307篇
地质学   482篇
海洋学   190篇
天文学   56篇
综合类   119篇
自然地理   126篇
  2024年   14篇
  2023年   25篇
  2022年   48篇
  2021年   59篇
  2020年   65篇
  2019年   49篇
  2018年   62篇
  2017年   51篇
  2016年   66篇
  2015年   44篇
  2014年   75篇
  2013年   59篇
  2012年   58篇
  2011年   51篇
  2010年   48篇
  2009年   56篇
  2008年   52篇
  2007年   55篇
  2006年   37篇
  2005年   51篇
  2004年   22篇
  2003年   37篇
  2002年   30篇
  2001年   28篇
  2000年   40篇
  1999年   56篇
  1998年   45篇
  1997年   43篇
  1996年   50篇
  1995年   38篇
  1994年   32篇
  1993年   32篇
  1992年   31篇
  1991年   17篇
  1990年   10篇
  1989年   16篇
  1988年   11篇
  1987年   7篇
  1986年   13篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1958年   1篇
排序方式: 共有1608条查询结果,搜索用时 15 毫秒
241.
??侫????????????GRACE????????????Ч?????????????????????????GRACE????????о???????????????????????????λ????????????????????λ???????????????????????????????????????????????????????????????λ???????????????????????????????????λ??????????????????????  相似文献   
242.
2019年6月8—10日江西出现了一次持续的大暴雨天气过程.使用常规观测资料、FY-2G卫星TBB资料和NCEP/NCAR再分析资料,在天气尺度环流背景和中尺度系统分析的基础上,利用WRF模式对大暴雨过程进行数值模拟,分析罗霄山脉地形对此次持续暴雨过程的影响.结果表明:此次暴雨过程发生在稳定维持的"两槽一脊"环流形势下,高空西风气流、低空西南急流、沿海大槽、上游移来短波槽和近地面辐合线是大暴雨过程形成的主要天气系统.中尺度云团不断生成于江西省西北部的罗霄山脉北支和中支的迎风坡附近,受沿海大槽阻挡而缓慢东移,与系统性云团合并从而导致江西省西北部地区出现持续性强降水.湘、赣两省交界处的罗霄山脉北支和中支地形对暴雨强度有实质性的影响,去除相应罗霄山脉地形的数值试验模拟的降水量明显减少.罗霄山脉附近持续长时间的辐合线是引发此次大暴雨过程的直接中尺度天气系统,其生成与低层风场辐合、低空急流和地形均有关.受地形抬升作用,对流天气系统在地形迎风坡附近不断生成并持续向东移过江西省西北部,是造成暴雨持续的重要原因.  相似文献   
243.
Faults can act as either conduits or barriers for hydrocarbon migration, because they have complicated anisotropic flow properties owing to their complicated three-dimensional structures. This study focuses on the Zhu I Depression, Pearl River Mouth Basin (PRMB), China. In this area, hydrocarbon migration and accumulation occurred over a relatively short period of time and were contemporaneous with fault activation, so the characteristics of hydrocarbon accumulations can be used to deduce the effect of active faults on hydrocarbon migration and accumulation. This study addresses the effect of fault activity on flow properties during hydrocarbon migration through a quantitative and comparative analysis of fault activity vs hydrocarbon accumulation. The fault slip rate and shale smear factor parameters were used to characterise faulting and elucidate its effect on hydrocarbon migration and accumulation. Active faults are generally excellent vertical conduits with strong fault activation resulting in vertical migration of most hydrocarbons and little preservation; traps near faults with fault slip rates greater than 20 m/Ma rarely contain commercial oil and gas accumulations. Faulting can form shale smear, which, if continuous, can act as a barrier to hydrocarbon migration. An active fault can allow hydrocarbon transport from deeper formations and to be trapped by continuous shale smear in shallower strata. Most of the oil and gas in the Zhu I Depression have accumulated near faults with a moderate fault slip rate (<20 m/Ma) and development of continuous shale smear (SSF<4–6).  相似文献   
244.
从水文地质的角度揭示了不同情况下单井的排水采气机理。在此基础上结合柿庄南区块59口井的实际排采数据,综合分析了气水产量,井底流压,套压及动液面随时间的变化曲线;并将早期生产特征归纳为3种类型:①低产水-高产气型,见气早,产气量高(>1000 m3/d)、产量递减缓慢、峰值产量高,日产水量小(<2m3/d),套压高;②低产水-中低产气型,日产气小于1000 m3,产量衰减明显且波动大,排水期较长;③高产水型,产气极少或无,日产水量大(>10m3/d),动液面下降缓慢,套压很低或为零。最后针对不同类型的低产井,提出相应的开采建议:低产水-低产气型井可采用二次压裂措施,改善煤层渗透率;高产水井可通过无机堵水或加大排采强度等方式排采;煤层气井排采要勇于实践,探索适合该区不同煤层的成功排采方法。  相似文献   
245.
Creep and saltation are the primary modes of surface transport involved in the fluid‐like movement of aeolian sands. Although numerous studies have focused on saltation, few studies have focused on creep, primarily because of the experimental difficulty and the limited amount of theoretical information available on this process. Grain size and its distribution characteristics are key controls on the modes of sand movement and their transport masses. Based on a series of wind tunnel experiments, this paper presents new data regarding the saltation flux, obtained using a flat sampler, and on the creeping mass, obtained using a specifically designed bed trap, associated with four friction velocities (0·41, 0·47, 0·55 and 0·61 m sec?1). These data yielded information regarding creeping and saltating sand grains and their particle size characteristics at various heights, which led to the following conclusions: (i) the creeping masses increased as a power function (q = ?1·02 + 14·19u*3) of friction wind velocities, with a correlation (R2) of 0·95; (ii) the flux of aeolian sand flow decreases exponentially with increasing height (q = a exp(–z/b)) and increases as a power function (q = ?26·30 + 428·40 u*3) of the friction wind velocity; (iii) the particle size of creeping sand grains is ca 1·15 times of the mean diameter of salting sand grains at a height of 0 to 2 cm, which is 1·14 times of the mean diameter of sand grains in a bed; and (iv) the mean diameter of saltating sand grains decreases rapidly with increasing height whereas, while at a given height, the mean diameter of saltating sand grains is positively correlated with the friction wind velocity. Although these results require additional experimental validation, they provide new information for modelling of aeolian sand transport processes.  相似文献   
246.
北祁连东段及其邻区地震滑坡的基本特征和危险区预测   总被引:3,自引:0,他引:3  
本文根据野外调查和航片解译,研究了北祁连东段及其邻区地震滑坡的基本特征和形成条件,探讨了地震滑坡的动力机制,并在本区使用多因素模糊数学综合评判方法预测滑坡危险区。  相似文献   
247.
Deng  Hao  Huang  Xiaofu  Mao  Xiancheng  Yu  Shuyan  Chen  Jin  Liu  Zhankun  Zou  Yanhong 《Natural Resources Research》2022,31(4):2103-2127

The shapes of geological boundaries such as contacts and faults play a crucial role in the transportation, deposition and preservation of metals in magmatic and hydrothermal systems. Analyzing the shapes of geological boundaries, in particular those associated with mineralization, is an important step in 3D mineral prospectivity modeling. However, existing methods of shape analysis are limited in the adaptation of various shapes, scales and topologies of geological boundaries. This paper presents a general method of shape analysis based on mathematical morphology (MM), which is a generalization of the original MM method for shape analysis. The generalization extends the applicability of the original MM method from closed surfaces to general surfaces, while inheriting the real 3D and multi-scale analysis capabilities of the original method. This is achieved by regarding MM operations on 3D sphere structural elements as their equivalent operations, and redefining the operations to general surfaces. The generalized MM method enables us to handle complex 3D shapes such as overturned and/or recumbent geological boundaries as well as incomplete shapes due to weathering processes and data unavailability. The proposed method was applied to analyze the shape of an intrusive contact in the Fenghuangshan Cu ore field, Eastern China, whose shape was in the form of a non-closed surface. This analysis revealed a stronger spatial association between the large concave parts of the contact zone and the mineralization. Due to its enhanced adaptability to different shapes, the generalized MM method, compared with the original MM method, allows us to capture shape features that are more plausible for the geological setting.

  相似文献   
248.
In order to monitor the pattern, distribution, and trend of land use/cover change (LUCC) and its impacts on soil erosion, it is highly appropriate to adopt Remote Sensing (RS) data and Geographic Information System (GIS) to analyze, assess, simulate, and predict the spatial and temporal evolution dynamics. In this paper, multi-temporal Landsat TM/ETM+ remotely sensed data are used to generate land cover maps by image classification, and the Cellular Automata Markov (CA_Markov) model is employed to simulate the evolution and trend of landscape pattern change. Furthermore, the Revised Universal Soil Loss Equation (RUSLE) is used to evaluate the situation of soil erosion in the case study mining area. The trend of soil erosion is analyzed according to total/average amount of soil erosion, and the rainfall (R), cover management (C), and support practice (P) factors in RUSLE relevant to soil erosion are determined. The change trends of soil erosion and the relationship between land cover types and soil erosion amount are analyzed. The results demonstrate that the CA_Markov model is suitable to simulate and predict LUCC trends with good efficiency and accuracy, and RUSLE can calculate the total soil erosion effectively. In the study area, there was minimal erosion grade and this is expected to continue to decline in the next few years, according to our prediction results.  相似文献   
249.
The Datong fault belt is a NE trending fault in the northern Qinghai-Xizang (Tibet) Plateau and controls the boundary of the Xining Basin and Datong Basin. It consists of the Maziying- Miaogou (F1) fault and the Laoye Mountain-Nanmenxia fault (F2). There is obvious displacement in vertical direction along the belt. The field investigation results show that this belt has long-term activity. There are several meters long crushed zones and veins along the fault side in the basement rock. On the fault section, the Cambria system thrusts over the red- brick-colored Quaternary Period gravel, and there is a fault gouge of several centimeters thick developed on the fault plane. The fault gouge date (ESR) on the fault plane is 610 ± 61ka. The covering deluvial loess is not dislocated, and the OSL result is 14.6 ± 1.5ka. So it can be concluded that the fault belt was active in the middle Pleistocene, but inactive in the late Pleistocene according to the age data and geomorphologic features. Interior formations of the Datong basin features fold with the major axis orienting northwest. According to the relation of fault and fold deformation, Datong fault is a trausversal tear, which is due to uneven compression of the folds in different parts and NNE trending regional compressive stress. It is common among the NE trending faults in the northeast of Qinghai-Xizang (Tibet) Plateau. These NE trending faults aren't large, and most are located in the active plate. They are all nearly vertical to the axis of the folds and compressive basins.  相似文献   
250.
The reservoirs of the Upper Triassic Xujiahe Formation in Sichuan Basin have the characteristics of low compositional maturity, low contents of cements and medium textural maturity. The general physical properties of the reservoirs are poor, with low porosity and low permeability, and there are only a few reservoirs with medium porosity and low permeability in local areas. Based on the diagenetic mineral association, a diagenetic sequence of cements is established: early calcites (or micrite siderites) →first quartz overgrowth→chlorite coatings→dissolution of feldspars and debris→chlorite linings→ second quartz overgrowth (quartz widen or filled in remain intergranular pores and solution pores)→dissolution→third quartz overgrowth (quartz filled in intergranular and intragranular solution pores)→intergrowth (ferro) calcites→dolomites→ferro (calcites) dolomites→later dissolution→veins of quartz and calcites formation. Mechanical compaction is the main factor in making the reservoirs tight in the basin, followed by the second and third quartz overgrowth. In a long-term closed system, only feld-spars and some lithic fragments are dissolved by diagenetic fluids, while intergranular cements such as quartz and calcit are not dissolved and thus have little influence on the porosity of the Xujiahe Formation. This is the third factor that may have kept the sandstones of Xujiahe Formation tight finally. The hydrocarbon was extensively generated from organic materials after the second quartz overgrowth, and selectively entered favorable reservoirs to form tight sandstone gas reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号